• 제목/요약/키워드: Di-methyl Ether

검색결과 51건 처리시간 0.029초

LPG-DME 압축착화 엔진에서 흡기 가변밸브 영향 (LPG-DME Compression Ignition Engine with Intake Variable Valve Timing)

  • 염기태;배충식
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.158-165
    • /
    • 2008
  • The combustion and exhaust emissions characteristics of a liquefied petroleum gas-di-methyl ether compression ignition engine with a variable valve timing device were investigated under various liquefied petroleum gas injection timing conditions. Liquefied petroleum gas was used as the main fuel and was injected directly into the combustion chamber. Di-methyl ether was used as an ignition promoter and was injected into the intake port. Different liquefied petroleum gas injection timings were tested to verify the effects of the mixture homogeneity on the combustion and exhaust emission characteristics of the liquefied petroleum gas-di-methyl ether compression ignition engine. The average charge temperature was calculated to analyze the emission formation. The ringing intensity was used for analysis of knock characteristics. The combustion and exhaust emission characteristics differed significantly depending on the liquefied petroleum gas injection and intake valve open timings. The CO emission increased as the intake valve open and liquefied petroleum gas injection timings were retarded. However, the particulate matter emission decreased and the nitrogen oxide emission increased as the intake valve open timing was retarded in the diffusion combustion regime. Finally, the combustion efficiency decreased as the intake valve open and liquefied petroleum gas injection timings were retarded.

Synthesis and Cationic Polymerization of Multifunctional Vinyl Ethers Containing Dipolar Electronic Systems

  • 이주연;김지향;김민정
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권3호
    • /
    • pp.307-313
    • /
    • 1999
  • 2,4-Di-(2'-vinyloxyethoxy)benzylidenemalononitrile (la), methyl 2,4-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (lb), 3,4-di-(2'-vinyloxyethoxy)benzylidene malononitrile (2a), methyl 3,4-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (2b), 2,5-di-(2'-vinyloxyethoxy)benzylidenemalononitrile (3a), methyl 2,5-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (3b), 2,3-di-(2'-vinyloxyethoxy)benzylidenemalononitrile (4a), and methyl 2,3-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (4b) were prepared by the condensation of 2,4-di-(2'-vinyloxyethoxy)benzaldehyde, 3,4-di-(2'-vinyloxyethoxy)benzaldehyde, 2,5-di-(2'-vinyloxyethoxy) benzaldehyde, and 2,3-di-(2'-vinyloxyethoxy)benzaldehyde with malononitrile or methyl cyanoacetate, respectively. Trifunctional divinyl ether monomers 1-4 were polymerized readily with boron trifluoride etherate as a cationic initiator to give optically transparent swelling poly(vinyl ethers) 5-8 havina oxybenzylidenemalononitrile and oxycyanocinnamate, which is presumably effective chromophore for second-order nonlinear optical applications. Polymers 5-8 were not soluble in common organic solvents such as acetone and DMSO due to crosslinking. Polymers 5-8 showed a thermal stability up to 300 ℃ in TGA thermograms, which is acceptable for electrooptic device applications.

Synthesis of Highly Crosslinked Temperature-resistant Poly(vinyl ethers) by Free Radical Polymerization

  • 이주연;김지향
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권8호
    • /
    • pp.851-856
    • /
    • 1998
  • 2,4-Di-(2-vinyloxyethoxy)benzylidenemalononitrile (2a), methyl 2,4-di-(2-vinyloxyethoxy)benzylidenecyanoacetate (2b), 3,4-di-(2-vinyloxyethoxy)benzylidenemalononitrile (4a), and methyl 3,4-di-(2-vinyloxyethoxy)benzylidenecyanoacetate (4b), 2,5-di-(2-vinyloxyethoxy)benzylidenemalononitrile (6a), and methyl 2,5-di-(2-vinyloxyethoxy)benzylidenecyanoacetate (6b) were prepared by the condensation of 2,4-di-(2-vinyloxyethoxy)benzaldehyde (1), 3,4-di-(2-vinyloxyethoxy)benzaldehyde (3), and 2,5-di-(2-vinyloxyethoxy)benzaldehyde (5) with malononitrile or methyl cyanoacetate, respectively. Trifunctional divinyl ether monomers 2, 4 and 6 were polymerized readily by free radical initiators to give optically transparent swelling poly(vinyl ethers) 7-9. Polymers 7-9 were not soluble in common organic solvents such as acetone and DMSO due to crosslinking. Polymer 7-9 showed a thermal stability up to 300 ℃ in TGA thennograms.

New Dimeric Phenolic Conjugates from the Wood of Tamarix tetragyna

  • Hussein, Sahar A.M.
    • Natural Product Sciences
    • /
    • 제3권2호
    • /
    • pp.127-134
    • /
    • 1997
  • Two new dimeric phenolic conjugates, 2,3-di-O-dehydrodigallicmonocarboxyl-$({\alpha},{\beta})$-$^4C_1$-glucopyranose and ellagic acid 3,3'-dimethylether-4-0-$SO_3K$ were isolated from the debarked heart wood of Tamarix tetragyna (Tamaricaceae) along with the known phenolic compounds, isoferulic acid, ferulic acid, gallic acid, gallic acid 4-methyl ether, syringic acid, ellagic acid 3,3'-dimethyl ether and ellagic acid. All structures were determined mostly by ESI-MS, ID and 2D-NMR spectroscopy.

  • PDF

신재생 에너지로서 DME 기술개발 현황 (Current Status and Technical Development for Di-Methyl Ether as a New and Renewable Energy)

  • 조원준;김승수
    • 공업화학
    • /
    • 제20권4호
    • /
    • pp.355-362
    • /
    • 2009
  • 석유를 기반으로 한 연료는 가까운 미래에 고갈될 것이다. 디메틸에테르(Di-methyl Ether, DME)는 청정에너지이며 천연가스,석탄 및 바이오매스 등으로 생산이 가능하다.DME는 분자구조 내에 탄소-탄소 결합이 없는 함산소 연료로 연소시 그을음과 황산화물을 발생하지 않으며, 물리적 특성이 액화석유가스(Liquified Petroleum Gas, LPG)와 매우 유사하여 LPG 유통인프라를 그대로 활용할 수 있다. DME는 세탄값이 55~60 정도로 높아 디젤 자동차용 연료로도 활용이 가능하다.차세대 청정연료로 혹은 차세대 화학공업 원료물질로 전력생산,디젤 연료, 가정용 연료 및 연료전지 등에 사용이 가능하다.본 총설에서는DME의 특성, 표준화, 국내외의 기술개발현황, 대체연료로서의 활용에 대해 살펴보고자 한다.

Steric Hindrance in the Free Radical Polymerization of Aryloxyethyl Vinyl Ethers Containing Electron-Deficient Olefin Groups$^{\dag}$

  • 이주연;진미경
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권6호
    • /
    • pp.613-617
    • /
    • 2000
  • p-(2-Vinyloxyethoxy)benzylidenemalononitrile (4a), methyl p-(2-vinyloxyethoxy)benzylidenecyanoacetate (4b), 3,5-dimethoxy-4-(2'-vinyloxyethoxy)benzylidenemalononitrile (5a), methyl 3,5-dimethoxy-4-(2'-vinyloxy-ethoxy) benzylidenecyanoacetate (5 b), o-(2 -vinyloxyethoxy)benzylidenemalononitrile (6a), methyl o-(2-viny-Ioxyethoxy) benzylidenecyanoacetate (6b), 1,3-di-(2',2'-dicyanovinyl)-5-methyl-2-(2'-vinyloxyetioxy)benzene (7a), l,3-di-(2'-carbomethoxy-2'-cyanovinyl)-5-methyl-2-(2'-vinyloxyethoxy)benzene (7b), 2,3,4-tri-(2'-viny-Ioxyethoxy) benzylidenemalononitrile (8a), methyl 2,3,4-tri-(2'-vinyloxyethoxy)benzylidenecyanoacetate (8b), 2,4,6-tri-(2'-vinyloxyethoxy)benzylidenemalononitrile (9a), and methyl 2,4,6-tri-(2'-vinyloxyethoxy)benzyl-idenecyanoacetate(9b) were prepared by the condensation of the corresponding benzaldehyde 1-3 with malononitrile or methyl cyanoacetate, respectively. Vinyl ether monomers 4, 6, and 8 polymerized readily with radical initiators to yield crosslinked polymers 10, 12, and 14. However, compounds 5, 7, and 9 were inert to radical initiators due to the steric hindrance. The resulting polymers 10, 12, and 14 were not soluble in common solvents showing a thermal stability up to $300^{\circ}C$.

Sulphated Flavonols of the Flowers of Tamarix amplexicaulis

  • Souleman, Ahmed M.A.
    • Natural Product Sciences
    • /
    • 제4권4호
    • /
    • pp.215-220
    • /
    • 1998
  • A new flavonol $3,5-di-O-KSO_3$:kaempferol 7,4'-dimethyl ether $3,5-O-KSO_3$, was isolated and identified from the flowers of Tamarix amplexicaulis. The known compounds quercetin $3-mono-O-KSO_3$, kaempferol 4'-methyl ether $3-mono-O-KSO_3$, kaempferol 7,4'-dimethyl ether $3-O-KSO_3$, quercetin 7,4'-dimethyl ether $3-mono-O-KSO_3$, kaempferol 3-O-glucuronide and quercetin 3-O-glucuronide were also separated and identified. Structures were established by conventional methods, including electrophoretic analysis, and confirmed by negative FAB-MS, $^1H-\;and\;^{13}C-NMR$.

  • PDF

천연가스를 이용한 DME 합성 고정층 촉매 반응기 해석 (Analysis of Fixed Bed Reactor for the synthesis of DME from METHANE)

  • 윤인섭;이신범;안성준;조병학;조원일;백영순;박달근
    • 한국가스학회지
    • /
    • 제8권4호
    • /
    • pp.42-49
    • /
    • 2004
  • 최근 디젤연료대체용으로 각광을 받고 있는 DiMethylEther(DME)를 천연가스로부터 얻어지는 합성가스를 이용하여 직접 생산하는 1단계법의 고정층 촉매 반응기를 시뮬레이션하였다. 그 결과 과잉냉각시 반응기의 온도가 떨어져서 전체적인 반응이 둔화되며, 강제 냉각을 하지 않을 경우 급격한 온도상승으로 인해 역시 반응효율이 떨어지게 된다는 것을 알 수 있었다. 또한, 냉각효과 및 반응물의 공간속도 및 반응물의 온도등의 조건에 따른 최적운전조건을 수립할 수 있었다.

  • PDF

프로페닐 에테르 단량체들의 합성과 광중합 특성 (Synthesis and Photopolymerization Characterization of Propenyl Ether Monomers)

  • 김기상;심상연
    • 한국응용과학기술학회지
    • /
    • 제34권2호
    • /
    • pp.203-209
    • /
    • 2017
  • 양이온계 광중합에 적용 가능한 propenyl ether 형태의 단량체들을 mono 및 di-functional alcohol과 allyl bromide의 축합반응으로 합성하였다. 이들 단량체들을 양이온 광개시제와 혼용하여 코팅조성물을 제조하여 광경화 반응성을 조사하였다. 그 결과 mono propenyl ether 형태인((prop-1-en-1-yloxy)methyl)benzene (POMB)는 dipropenyl ether 계인 1,4-bis(prop-1-en-1-yloxy) benzene (BPOB) 비교하여 초기 중합 속도는 10.2로 상대적으로 낮게 나타났으나 1.5mol%의 광개시제를 포합한 배합물에서는 90초이내에 거의 정량적으로 반응하였다. 또한 긴알킬기를 갖는 술폰산 염계 광개시제들은 단량체들에 빠른 용해 특성을 나타내었고 산성도가 높은 광개시제인(4-n-decyloxyphenyl)diphenylsulfonium hexafluoroantimonate(DPSA)와 (4-n-decyloxyphenyl) diphenylsulfonium triflate (DPST)를 사용한 경우 비교적 높은 중합속도와 전환율을 나타내었다.