• 제목/요약/키워드: Dexterous Robot Hand

검색결과 10건 처리시간 0.04초

Design and Control of a Dexterous Multi-fingered Robot Hand

  • Chung, Woo-Jin;Lee, Hyung-Jin;Kim, Mun-Sang;Lee, Chong-Won;Kang, Bong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.83.1-83
    • /
    • 2001
  • This paper presents a three-fingered robot hand, called the KIST hand, Which have one active joint and one passive joint. The thumb is fixed on the palm, and the index and the middle take lateral motions symmetrically. A mechanical clutch and an embedded force sensor, attached on the distal link of the fingers, enable the KIST hand to perform human-like functions. A result of experiment shows reliable grasping performance of the hand which maintain stable grasp under disturbances.

  • PDF

형상기억합금 Underactuated 로봇 핸드의 설계에 관한 연구 (A Study on Design of Underactuated Robot Hand driven by Shape Memory Alloy)

  • 김광호;신상호;정상화
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.51-57
    • /
    • 2011
  • The lightweight and compact actuator with high power is required to perform motion with multiple degrees of freedom. To reduce the size and inertia of a robot manipulator, the mechanical transmission system is used. The shape memory alloy(SMA) is similar to the muscle-tendon-bone network of a human hand. However, there are some drawback and nonlinearity, such as the hysteresis and the stress dependence. In this paper, the design of the underactuated robot hand is studied. The 3-finger dexterous hand is driven by the SMA actuator using segmental mechanism. This digital approach enables to overcome the nonlinearity of SMA wire. The translational displacement of SMA actuator required to bend a phalanx of the underactuated robot hand is estimated and the bending angle of the underactuated robot hand according to input displacement of SMA actuator is predicted by the multi-body dynamic analysis.

안정 파지를 위한 16자유도 역구동 관절을 가지는 인간형 로봇 손 개발 (Development of a 16 DOF Anthropomorphic Robot Hand with Back-Drivability Joint for Stable Grasping)

  • 양현대;박성우;박재한;배지훈;백문홍
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.220-229
    • /
    • 2011
  • This paper focuses on a development of an anthropomorphic robot hand. Human hand is able to dexterously grasp and manipulate various objects with not accurate and sufficient, but inaccurate and scarce information of target objects. In order to realize the ability of human hand, we develop a robot hand and introduce a control scheme for stable grasping by using only kinematic information. The developed anthropomorphic robot hand, KITECH Hand, has one thumb and three fingers. Each of them has 4 DOF and a soft hemispherical finger tip for flexible opposition and rolling on object surfaces. In addition to a thumb and finger, it has a palm module composed the non-slip pad to prevent slip phenomena between the object and palm. The introduced control scheme is a quitely simple based on the principle of virtual work, which consists of transposed Jacobian, joint angular position, and velocity obtained by joint angle measurements. During interaction between the robot hand and an object, the developed robot hand shows compliant grasping motions by the back-drivable characteristics of equipped actuator modules. To validate the feasibility of the developed robot hand and introduced control scheme, collective experiments are carried out with the developed robot hand, KITECH Hand.

유연한 인간형 로봇 손의 설계 (Design of a Dexterous Anthropomorphic Robot Hand)

  • 지호준;이상헌;최병준;최혁렬
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.357-363
    • /
    • 2006
  • According to the study of grasping of the human hand, it is noted that the metacarpal link of the thumb plays the key role in power grasping. Also the face of fingertip can be discriminated into five parts depending on the grasping modalities such as pinch grasp, fingertip grasp and power grasp. In this paper, the design of the anthropomorphic robot hand which has a thumb and three fingers is proposed. A difference of SKKU hand II from the previous gripperlike robot hand is that the metacarpal bone is connected between the thumb and the palm. This thumb mechanism is specially designed to get the degree of freedom which can realize flexible motions relative to objects. Based on the analysis, the hand mechanism is developed. Since the driving circuits for the hand are embedded in the hand, only the communication lines supporting CAN protocol with DC power cable are necessary as the input. A new robot is manufactured and feasibility of the hand is validated through preliminary experiments.

직렬 탄성 액츄에이터 기반의 로봇 손가락의 힘 제어 (Force Control of Robot Fingers using Series Elastic Actuators)

  • 이승엽;김병상;송재복;채수원
    • 제어로봇시스템학회논문지
    • /
    • 제18권10호
    • /
    • pp.964-969
    • /
    • 2012
  • Robot hands capable of grasping or handling various objects are important for service robots to effectively aid humans. In particular, controlling a contact force and providing a compliant motion are essential when the hand is in contact with objects. Many dexterous robot hands equipped with force/torque sensors have been developed to perform force control, but they suffer from the complexity of control and high cost. In this paper, a low-cost robot hand based on SEA (Series Elastic Actuator), which is composed of compression spring, stretch sensor, and wire, is proposed. The grasping force can be estimated by measuring the compression length of spring, which would allow the hand to perform force control. A series of experimentations are carried out to verify the performance of force control of the proposed robot hand, and it is shown that it can successfully control the contact force without any additional force/torque sensors.

공압구동식 로봇손을 위한 소형 4/3-Way 비례제어밸브의 설계 및 실험 (Design and Experiment of a miniature 413-way proportional valve for a servo-pneumatic robot hand)

  • 류시복;김상만;홍예선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.331-336
    • /
    • 1995
  • In this past decade, industrial robot have substituted human workers successfully in certain areas, however, the applications are limited due to the shortcoming in their mechanism and control strategies. Many researchers, therefore, have focused on improving the mechanical and sensory capabilities. Developing mult-degree-of-freedom end effectors, in other words robot hands, is one of the topics that researchers have begun to improve the limitation. A set of direct drive type servo-pneumatic finger joint has been developed for a dexterous robot hand. To control the pneumatic finger joints, a prototype 4/3-way proportional control valve has been designed and tested as a preliminary, research for the control of the pneumatic finger joints. A series of experiments have been conducted to verify the performance characteristics of the valve and the conventional proportional error contral with minor-loop compensation has been used to control the anguar position of the finger joints.

  • PDF

공압 구동식 로봇 손을 위한 소형 4/3-way 비례제어 밸브의 설계 및 실험 (Design and Experiment of a Miniature 4/3-Way Proportional Valve for a Servo-Pneumatic Robot Hand)

  • 류시복;홍예선
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.142-147
    • /
    • 1998
  • Developing robot hands with multi-degree-of-freedom is one of the topics that researchers have recently begun to improve the limitation by adding flexibility and dexterity. In this study, an articulated servo-pneumatic robot hand system with direct-drive joints has been developed whose main feature is the minimization of the dimension. The servo-pneumatic system is advantageous to fabricate a dexterous robot hand system due to the high torque-to-weight and torque-to-volume ratio. This enables the design of a finger joint with an integrated rotary vane type actuator which produces high output torque without reduction gears, being very robust. In order to control the servo-pneumatic finger joints, a miniature proportional valve that can be attached to the robot hand is required. In this paper, a flapper nozzle type 4/3-way proportional directional valve has been designed and tested. The experimental results show that the developed valve can control a finger joint satisfactorily without much vibratory joint movements and acoustic noises.

  • PDF

Miniature Ultrasonic and Tactile Sensors for Dexterous Robot

  • Okuyama, Masanori;Yamashita, Kaoru;Noda, Minoru;Sohgawa, Masayuki;Kanashima, Takeshi;Noma, Haruo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권5호
    • /
    • pp.215-220
    • /
    • 2012
  • Miniature ultrasonic and tactile sensors on Si substrate have been proposed, fabricated and characterized to detect objects for a dexterous robot. The ultrasonic sensor consists of piezoelectric PZT thin film on a Pt/Ti/$SiO_2$ and/or Si diaphragm fabricated using a micromachining technique; the ultrasonic sensor detects the piezoelectric voltage as an ultrasonic wave. The sensitivity has been enhanced by improving the device structure, and the resonant frequency in the array sensor has been equalized. Position detection has been carried out by using a sensor array with high sensitivity and uniform resonant frequency. The tactile sensor consists of four or three warped cantilevers which have NiCr or $Si:B^+$ piezoresistive layer for stress detection. Normal and shear stresses can be estimated by calculation using resistance changes of the piezoresitive layers on the cantilevers. Gripping state has been identified by using the tactile sensor which is installed on finger of a robot hand, and friction of objects has been measured by slipping the sensor.

근접 센서를 이용한 로봇 손의 파지 충격 개선 (Grasping Impact-Improvement of Robot Hands using Proximate Sensor)

  • 홍예선;진성무
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.42-48
    • /
    • 1999
  • A control method for a robot hand grasping a object in a partially unknown environment will be proposed, where a proximate sensor detecting the distance between the fingertip and object was used. Particularly, the finger joints were driven servo-pneumatically in this study. Based on the proximate sensor signal the finger motion controller could plan the grasping process divided in three phases ; fast aproach, slow transitional contact and contact force control. That is, the fingertip approached to the object with full speed, until the output signal of the proximate sensor began to change. Within the perating range of the proximate sensor, the finger joint was moved by a state-variable feedback position controller in order to obtain a smooth contact with the object. The contact force of fingertip was then controlled using the blocked-line pressure sensitivity of the flow control servovalve for finger joint control. In this way, the grasping impact could be reduced without reducing the object approaching speed. The performance of the proposed grasping method was experimentally compared with that of a open loop-controlled one.

  • PDF

Development of Flexible Tactile Sensor Array

  • Kim, Hyungtae;Kwangmok Jung;Lee, Kyungsub;Jaedo Nam;Park, Hyoukryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.97.6-97
    • /
    • 2002
  • In this paper, we present an arrayed flexible tactile sensor, which can detect contact normal forces as well as positions. The tactile sensor is developed using Polyvinylidene Fluoride (PVDF) that is known as piezoelectric polymer, and the surface electrode is fabricated using silk-screening technique with silver. We develop a charge amplifier in order to amplify the small signal from the sensor, and a fast signal processing unit by using a DSP chip. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In the future, the developed sensor is applied to a dexterous robotic hand...$\textbullet$ Tactile sensing, PVDF, Robot hand

  • PDF