• Title/Summary/Keyword: Dewfall

Search Result 4, Processing Time 0.026 seconds

Formation and Chemical Characteristics of Dewfall in 2005 at Busan (2005년 부산지역 이슬의 생성과 화학적 특성)

  • Jeon, Byung-Il;Hwang, Yong-Sik;Park, Gwang-Soon
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.847-853
    • /
    • 2006
  • In order to understand chemical characteristics and formation of dewfall in Busan, we analysed monthly distribution of dewfall, and investigated its chemical composition of dewfall. This study used the modified teflon plate $(1m{\times}1m)$ at Jangyongsil science high school from June 2005 to October 2005. In order to estimate qualitatively water soluble components, IC, ICP and UV methods for water soluble ions are also used respectively. Dewfall amount of sampling periods (26 day) collected 1.29 mm. Distribution of water soluble ions in dewfall founded the highest concentration $(81.3{\mu}eq/{\ell}\;for\;NO_3^-,\;146.6{\mu}eq/{\ell}\;for\;SO_4^{2-},\;and\;114.3{\mu}eq/{\ell}\;for\;nss-SO_4^{2-})$ during the June. pH was the lowest by 5.12 June, and October (pH 6.68) by most high and average pH was 5.46. Monthly equivalent ratio of $[SO_4^{2-}]/[NO_3^-]$ showed the highest value (2.94) during the September, the lowest value (1.77) during the July, and the mean value was 3.45.

Formation and Chemical Characteristics of Dewfall in Western Busan Area (부산 서부지역의 이슬 생성과 화학적 특성)

  • Jeon Byung-Il;Hwang Yong-Sik;Park Moon-Po
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1079-1088
    • /
    • 2004
  • In order to understand chemical characteristics and dewfall formation in western Busan area, we analysed monthly distribution of dewfall, and investigated the correlation between dewfall formation amount and meteoro­logical factors. This study used the modified teflon plate $(1m{\times}1m)$ at Silla university in Busan from August 2002 to April 2003. In order to estimate qualitatively water soluble components, IC, ICP and UV methods for water soluble ions are also used respectively. Dewfall amount of sampling periods (47 day) collected 3.8 mm. Meteorological conditions for the formation of dewfall above $50\;g/m^{2}$ showed that temperature diurnal $range(^{\circ}C)\;was\;5.6^{\circ}C$ above, cloud amounts (1/10) at dawn of the sampling day was 7/10 below, mean wind speed at dawn (0~6hr) of the sampling day was 4.4 m/sec below, and mixing ratio at 6hr of the sampling day was 3.2 g/kg above. Distribution of water soluble ions in dewfall founded the highest concentration (206.1\;{\mu}eq/{\ell}\;for\;SO_{4}^{2-},\;42.4\;{\mu}eq/{\ell}\;for\;NH_{4}^{+},\;249.2\;{\mu}eq/{\ell}\;for\;Ca^{2+},\;and\;42.0\;{\mu}eq/{\ell}\;for\;Mg^{2+})$ during the March, the lowest concentration $(73.0\;{\mu}eq/{\ell}\;for\;SO_{4}^{2-},\;4.6\;{\mu}eq/{\ell}\;for\;NH_{4}^+\;and\;72.7\;{\mu}eq/{\ell}\;for\;Ca^{2+})$ during the August. Monthly equivalent ratio of $[SO_{4}^{2-}]/[NO_{3}^-]$ showed the highest value (4.99) during the October, the lowest value (1.84) during the August, and the mean value was 3.45.

A Study on Chemical Composition and Formation of Dewfall in Miryang Area (밀양지역 이슬의 생성과 화학적 조성에 관한 연구)

  • Jeon, Byung-Il;Hwang, Yong-Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.3
    • /
    • pp.227-235
    • /
    • 2006
  • In order to understand chemical characteristics and formation of dewfall in Miryang area, we analysed monthly distribution of dewfall, and investigated its chemical composition of dewfall. The modified teflon plate ($1m{\times}1m$) was used qualitatively to collect water soluble components at Miryang weather station from August 2002 to April 2003. Dewfall amount during the sampling periods (37 day) collected 5.28 mm. The behaviors of water soluble ions in dewfall showed the highest concentration ($555.8{\mu}eq/l$ for $Cl^-$, $338.6{\mu}eq/l$ for ${NO_3}^-$, $1118.2{\mu}eq/l$ for ${SO_4}^{2-}$, $262.7{\mu}eq/l$ for ${NH_4}^+$, $1341.0{\mu}eq/l$ for ${Ca_2}^+$, $177.8{\mu}eq/l$ for ${Mg_2}^+$, and $325.5{\mu}eq/l$ for $Na^+$) during the April, the lowest concentration ($243.6{\mu}eq/l$ for ${SO_4}^{2-}$, $39.3{\mu}eq/l$ for ${NH_4}^+$ and $456.2{\mu}eq/l$ for ${Ca_2}^+$) during the September. Monthly equivalent ratio of [${SO_4}^{2-}$]/[${NO_3}^-$] showed the highest value (6.45) during the March, the lowest value (1.86) during the September, and the mean value was 2.70.