• Title/Summary/Keyword: Dew point

Search Result 192, Processing Time 0.022 seconds

A Study on the Application of the Dehumidification System for Radiant Floor Cooling Using Ondol (온돌을 이용한 바닥복사냉방의 제습시스템 적용에 관한 연구)

  • 임재한;여명석;양인호;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.607-616
    • /
    • 2002
  • This study has been conducted to evaluate the applicability of the control method in the dehumidification-integrated radiant floor cooling system in terms of stability of the room air temperature and the control variables through experiments. To do this, the relationship between the control variables in preventing floor surface condensation is first analyzed and the control method is predetermined through simulations. The results are as follows. First, it is necessary to determine the operation status of the dehumidification system according to the relationship between floor surface temperature and dew point temperature in the conditioned space. Second, outdoor reset with indoor temperature feedback control is better than on/off bang-bang control with respect to temperature stability in controlling the room air temperature and the possibility of energy savings. Finally, the humidity sensor can be located with the current thermostat in that there are small differences in absolute humidity in vertical distribution.

Effect of Oxygen Partial Pressure on Tungsten-Alumina Bonding Behavior (텅스텐-알루미나 접합거동에 미치는 산소분압의 영향)

  • 박정현;이상진
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.6
    • /
    • pp.755-762
    • /
    • 1990
  • The tungsten paste was printed on the surface of 92% alumina sheet which was made by type casting process. The printed tungsten was bonded on the Al2O3 by co-firing in reducing atmosphere. During the co-firing, the binder burn-out was easier in wet H2 atmosphere than in dry H2, which affected sintered density. In practically, the use of wet H2 above 100$0^{\circ}C$ was beneficial for density of alumina and bond strength. This phenomena occured more distinctly when atmosphere varied from dry H2 to wet H2 than varied dew point in wet H2. In wet H2, the improvement in bonding strength can be attributed to good glass migration into the metal layer due to inhibition of the tungsten particle growth, with increase of alumina density, at the temperatrue higher than 100$0^{\circ}C$.

  • PDF

The Characteristics of RVM Curve at Moisture Content (수분함유량에 따른 RVM 특성곡선의 특성)

  • Han, Hee-Joon;Kim, Ju-Han;Kang, Seok-Young;Lee, Sei-Hyun;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07e
    • /
    • pp.45-46
    • /
    • 2006
  • 변압기 내부의 수분은 절연물의 절연내력에 악영향을 끼치므로 수분측정은 변압기 사고예방과 수명연장에 매우 중요하다. 변압기 내의 수분함유량을 검출하는 시험법으로 Karl-Fischer법과 Dew-Point법을 사용해 왔다. 그러나 이 시험법은 기기를 분해해야 하고, 국부적인 부분에 대한 정보일 뿐 아니라 분석을 즉시 현장에서 하지 못하는 단점이 있다. 따라서 기존 시험법의 단점을 보완하기 위해 회복전압법(RVM, Return Voltage Method)이 제안되었다. 본 논문에서는 모의 셀 내부에 수분을 강제로 주입하여 수분함유량 변화를 주고 Karl-Fischer법을 통한 수분함유량 측정 결과와 RVM 특성 곡선을 비교 분석하였다.

  • PDF

TOVS retrieved data with the real time synoptic surface data (종관 지상 자료를 이용한 TOVS수치 해석 산출 자료)

  • 주상원;정효상;김금란
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.1
    • /
    • pp.55-67
    • /
    • 1994
  • The International TOVS(TIROS Oprational Vertical Sounders) Process Package(ITPP-VI)is for a global usage, which needs a surface data to generate atmospheric soundings. If the initial input process in the ITPP-VI is not modified, it takes climatic surface data for producing sounding data in general. Korea Meteorological Administration(KMA) is trying to improve the quality of TOVS sounding data using real-time synoptic observations and make a use weather prediction and analysis in various ways. Serval cases in this study show that TOVS retrieved meteolorogical parameters such as atmopheric temperature, dew point depression and geopotential heights used by synoptic surface observations can delineate more detailed atmospheric feature rather than those used by climate surface data. In addition, the collocated comparisons of TOVS synoptic retrieved parameters with radiosonde observations are performed statistically. TOVS retrieved fields with the synoptic surface analyzed data show smaller bias reatively than those with the climatic data and also reduced root mean square differences below 700 hPa as expected.

Dryer Design for High Altitude Engine Test (고공 엔진시험을 위한 Dryer 개발)

  • Park, Berm-Joo;Kim, Tea-In
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.419-423
    • /
    • 2008
  • 엔진 성능의 시험에 있어서 작동유체인 압축공기의 물성중 수분은 매우 중요한 부분으로, 엔진의 작동과 성능에 영향을 미치는 대표적인 요인이다. 특히 고공환경 시험에서는 습도의 조건에 따라 성능의 차이가 커지므로 엔진의 정확한 성능과 운용성을 파악하는데 작동유체인 압축공기중에 포함된 수분의 조건은 대단히 중요하다. 압축상태인 작동유체의 수분 함유량을 고공의 조건과 같은 $-40^{\circ}C$ 이하의 이슬점(Dew Point) 상태로 제습 하기 위한 장치인 흡착식 Air Dryer의 개발을 위해 흡착과정 및 재생과정에 대한 이해와 흡착제의 흡착효율을 극대화하고, 재생비용을 최소화하여 에너지를 저감 할 수 있는 Air Dryer System에 대하여 기술한다.

  • PDF

A Study on the Determination of Mixed Refrigerant for the Joule-Thomson Cryocooler (극저온 Joule-Thomson 냉동기용 혼합냉매 결정에 관한 연구)

  • 이경수;장기태;정상권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.901-907
    • /
    • 2000
  • The conceptual determination of mixed-refrigerant (MR) for a closed Joule-Thomson cryocooler is described in this paper. The thermodynamic cycle design was mainly considered to develop a cryocooler by using a compressor of domestic air-conditioning unit. The target cooling performance of the designed cryocooler is 10 W around 70 K with less than 5 kJ/kg enthalpy rise. The systematic approach of choosing a proper refrigerant among 20 different kinds of mixture for such cryogenic temperature was introduced in detail. The main components of the cryocooler are compressor, evaporator, oil separator, after-cooler, counterflow heat exchanger, and J-T expansion device. Due to the limitation of the compressor operation range, the temperature after the compression was limited below $117^{\circ}C$ (390 K) and the temperature before compression was restricted above $5^{\circ}C$ (278 K). 20 atm of discharging pressure (high pressure) and less than 3 atm suction pressure (low pressure) were the design conditions. The inlet temperature of a counterflow heat exchanger in the high Pressure side was about 300 K. The proper composition of the mixed refrigerant for the designed J-T cryocooler is 15% mol of$ N_2, 30% mol of $CH_4,\; 30% mol\; of C^2H^ 6,\; 10%\; mol\; of\; C_3H_8\; and \;15%\; mol\; of\; i-C_4H_10$.

  • PDF

A Study on Frost Occurrence Estimation Model in Main Production Areas of Vegetables (채소 주산지에 대한 서리발생예측 연구)

  • Kim, Yongseok;Hur, Jina;Shim, Kyo-Moon;Kang, Kee-Kyung
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.606-612
    • /
    • 2019
  • In this study, to estimate the occurrence of frost that has a negative effect on th growth of crops, we constructed to the statistical model. We factored such various meteorological elements as the minimum temperature, temperature at 18:00, temperature at 21:00, temperature at 24:00, average wind speed, wind speed at 18:00, wind speed at 21:00, amount of cloud, amount of precipitation within 5 days, amount of precipitation within 3 days, relative humidity, dew point temperature, minimum grass temperature and ground temperature. Among the diverse variables, the several weather factors were selected for frost occurrence estimation model using statistical methods: T-test, Variable importance plot of Random Forest, Multicollinearity test, Akaike Informaiton Criteria, and Wilk's Lambda values. As a result, the selected meteorological factors were the amount of cloud, temperature at 24:00, dew point temperature, wind speed at 21:00. The accuracy of the frost occurrence estimation model using Random Forest was 70.6%. When it applied to the main production areas of vegetables, a estimation accuracy of the model was 65.2 and 78.6%.

An Experimental Study on the Effect of Air Temperature and Humidity on Humidification Performance of the Humidifying Element Used for Air Conditioning (공기 온습도가 공조용 가습 소자의 가습 성능에 미치는 영향에 대한 실험 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.732-740
    • /
    • 2019
  • Evaporative humidification using a humidifying element is widely used for humidification of a building or a data center. The performance of a humidifying element is commonly expressed as humidification efficiency, which is used independent of air temperature, humidity and water temperature. In this study, a series of tests were conducted at two air conditions (data center and commercial building) using two different humidifying elements (cellulose/PET and Glasdek) changing the frontal air velocity and water temperature. Results showed that the measured humidification efficiency was dependent on the air condition and water temperature. In fact, even dehumidification occurred at the inlet of the humidifying element at the air condition of commercial building. The reason was due to the inlet water temperature, which was lower than the dew point air temperature. As the difference between the inlet water and the dew point air temperature increased, the humidification efficiency decreased. This suggest that proper thermal model should account for the inlet region, where the amount of moisture transfer may be different from the other part of the humidification element. A simple analysis on the thermal performance of the cellulose/PET humidification element showed that the Sherwood number was adequately predicted, whereas the friction factor was ovepredicted, probably due to the simplification of the channel geometry and the neglection of the water film on the element surface.

Study on the Change of Relative Humidity in Subsea Pipeline According to Drying Method (건조 공법에 따른 해저 파이프라인 내부 상대습도 변화 특성 연구)

  • Yang, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.406-413
    • /
    • 2022
  • The subsea pipeline pre-commissioning stage consists of the following processes: Flooding, Venting, Hydrotesting, Dewatering, Drying, and N2 Purging. Among these processes, drying and nitrogen purging processes are stipulated to reduce and maintain the relative humidity below dew point to prevent the generation of hydrate and the risk of gas explosion in the pipeline during operation. The purpose of this study is to develop an analysis method for the air drying and nitrogen purging process during pre-commissioning of the subsea pipeline, and to evaluate the applicability of the analysis method through comparison with on-site measurement results. An analysis method using Computational Fluid Dynamics (CFD) was introduced and applied as a method for evaluating the relative humidity inside a subsea pipeline, and it was confirmed that analysis results were in good agreement with the on-site measurement results for the air drying and nitrogen purging process of the offshore pipeline. If the developed air drying and nitrogen purging analysis method are used as pre-engineering tools for pre-commissioning of subsea pipelines in the future, it is expected to have a significant impact on the improvement of work productivity.

Estimation of the Moisture Maximizing Rate based on the Moisture Inflow Direction : A Case Study of Typhoon Rusa in Gangneung Region (수분유입방향을 고려한 강릉지역 태풍 루사의 수분최대화비 산정)

  • Kim, Moon-Hyun;Jung, Il-Won;Im, Eun-Soon;Kwon, Won-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.697-707
    • /
    • 2007
  • In this study, we estimated the PMP(Probable Maximum Precipitation) and its transition in case of the typhoon Rusa which happened the biggest damage of all typhoons in the Korea. Specially, we analysed the moisture maximizing rate under the consideration of meteorological condition based on the orographic property when it hits in Gangneung region. The PMP is calculated by the rate of the maximum persisting 12 hours 1000 hPa dew points and representative persisting 12 hours 1000 hPa dew point. The former is influenced by the moisture inflow regions. These regions are determined by the surface wind direction, 850 hPa moisture flux and streamline, which are the critically different aspects compared to that of previous study. The latter is calculated using statistics program (FARD2002) provided by NIDP(National Institute for Disaster Prevention). In this program, the dew point is calculated by reappearance period 50-year frequency analysis from 5% of the level of significant when probability distribution type is applied extreme type I (Gumbel distribution) and parameter estimation method is used the Moment method. So this study indicated for small basin$(3.76km^2)$ the difference the PMP through new method and through existing result of established storm transposition and DAD(Depth-Area-Duration). Consequently, the moisture maximizing rate is calculated in the moisture inflow regions determined by meteorological fields is higher $0.20{\sim}0.40$ range than that of previous study. And the precipitation is increased $16{\sim}31%$ when this rate is applied for calculation.