• Title/Summary/Keyword: Devolatilization

Search Result 60, Processing Time 0.023 seconds

Gases from Devolatilization of Swedge Sludge in a Small Fluidized Bed Reactor (소형 유동층반응기에서 하수슬러지의 열분해 생성가스)

  • 송병호
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.567-572
    • /
    • 2003
  • 하수슬러지로부터 재활용 가스 에너지를 얻을 수 있다. 슬러지 가스화의 공정 개발을 위해서는 초기에 휘발분이 방출되는 열분해 단계의 거동이 매우 중요하다. 열분해 생성물(가스, 타르, 촤 등)의 수율은 열분해 조건(가열속도, 체류시간, 온도, 압력, 가스분위기)뿐만 아니라 연료입자의 물리적 구조에 따라 좌우된다. 석탄의 경우에는 열분해과정에서 휘발분의 수율에 대한 상관식들이 많이 제시되었다.(중략)

  • PDF

Characteristics of Plasma Blacks Used as an Electrode of Direct Formic Acid Fuel Cell

  • Park, Young-Sook;Choi, Jong-Ho;Han, Jong-Hee;Lim, Tae-Hoon;Beak, Young-Soon;Ju, Jeh-Beck;Shon, Tae-Won;Lee, Joong-Kee
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • Plasma carbon blacks of 20~30 nm diameter were synthesized by direct decomposition of natural gas using a hybrid plasma torch system with 50 kW direct current and 4 MHz of radio frequency. The insulating rector which inside diameter of 400 mm and length of 1500 mm, respectively was kept at 300~$400^{\circ}C$ during the preparation. The ultimate analysis of plasma carbon blacks reveals that the raw plasma carbon blacks contains a large quantity of volatile which is mainly consist of hydrogen. Therefore devolatilization of raw plasma carbon blacks were carried out at $900^{\circ}C$ for one hour under nitrogen atmosphere. The devolatilization leads to the decrease in electrical resistivity and surface oxygen functional groups of plasma carbon black significantly. In order to investigate the plasma carbon as a catalyst support, devolatilized plasma black at $900^{\circ}C$ (DPB) supported PtAu catalyst was synthesized by sodium boronhydride reduction method. Electrochemical measurements and direct formic acid fuel cell test indicated that catalytic activity of DPB supported PtAu catalyst for formic acid oxidation was similar to that of Vulcan XC-72 of commercial carbon black supported one.

  • PDF

Direct Combustion Characteristics of Coal by Oxygen Carrier (산소공여입자에 의한 석탄의 직접연소 특성)

  • Ryu, Hojung;Lee, Chungwon;Lee, Dongho;Bae, Dalhee;Lee, Suengyong;Park, Yeongseong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.87-96
    • /
    • 2014
  • Direct combustion characteristics of coal and oxygen carrier were measured in the thermogravimetric analyzer using four coals and two different oxygen carriers. The direct combustion efficiency decreased in order of Roto, Kideco, Sunhwa and Hyper coal for both oxygen carriers. Moreover, OCN703-1100 oxygen carrier showed better combustion efficiency than OCN706-1100 oxygen carrier for all four coals. The reduction characteristics of two oxygen carriers for $CH_4$, CO and $H_2$ gases were measured in the thermogravimetric analyzer to investigate why OCN703-1100 oxygen carrier showed better combustion efficiency than OCN706-1100 for all coals. The OCN703-1100 oxygen carrier represented higher reduction rate than OCN706-1100 for all reducing gases. Moreover, the total pore area and the porosity of OCN703-1100 were higher than those of OCN706-1100 oxygen carrier. The total volatile gas and volatile components of four coals were measured in a batch type fluidized bed reactor to investigate why the direct combustion efficiency decreased in order of Roto, Kideco, Sunhwa and Hyper coal for both oxygen carriers. The direct combustion efficiency was proportional to the total amount of ($CH_4+CO+H_2$) produced during devolatilization of coals.

The study on the combustion model and combustion characteristics for stoker type incinerator (스토커형 소각로의 연소특성 및 연소 모델에 관한 연구)

  • Kim, Ho-Yeong;Hwang, Ho-Yeong;Jeon, Cheol-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.627-639
    • /
    • 1998
  • A combustion model for the incineration of municipal solid waste(MSW) in the stoker type incinerator was developed by considering the variation of physical composition of MSW. Theoretical analysis and numerical simulation for the combustion characteristics in incinerator were conducted by using the present model and the effects of compositional variation on the incineration characteristics of MSW was examined theoretically. It is found that large excess air enhances drying, but depresses volatilization. For the large value of moisture content, pyrolysis is fast but drying is slow. As the value of plastic content increases, devolatilization becomes slower. Larger amount of primary air supply to the rear side of stoker leads to increase the possibility of delaying the combustion.

Fuel Characteristics of Sewage Sludge in a Fluidized Bed Incinerator (유동상 소각로에서 하수 슬러지 연료 특성)

  • Choi, Jin-Hwan;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.81-91
    • /
    • 1999
  • Fuel characteristics of sewage sludge as required for the fluidized bed incinerators have been evaluated. Sewage sludge is basically a solid fuel with high percentage of moisture. Moisture content of the fuel directly affects the heating value of the fuel and the exhaust gas composition. When the sludge of transported into the incinerator, sludge cake is subject to the mixing, break-up and heat-up. Fluidization process would enhance these physical processes. The sludge fuel could then undergo the moisture evaporation and devolatilization process. Subsequent oxidation of volatiles as well as the remaining char would then follow. Sludge samples are characterized with high percentage of volatiles out of total combustibles. Quantitative understanding of above listed subprocesses would certainly help in the utilization of fluidized bed incinerators. A limited set of fuel characterization tests including calorimetric analysis, proximate analysis, elemental analysis and thermogravimetric analysis were conducted for the selected sludge samples. The measurement reasults of sludge samples were reported along with some published data. Limited experience in the actual incinerator plant is also presented.

  • PDF

Modeling of a Pulverized Coal Combustion With Applying WSGGM (희체가스 가중합산모델을 적용한 미분탄 연소의 해석)

  • Yu, Myoung-Jong;Baek, Seung-Wook
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.155-163
    • /
    • 1999
  • A numerical study for simulating a swirling pulverized coal combustion in axisymmetric geometry is done here by applying the weighted sum of gray gases model (WSGGM) approach with the discrete ordinate method (DOM) to model the radiative heat transfer equation. In the radiative transfer equation, the same polynomial equation and coefficients for weighting factors as those for gas are adopted for the coal/char particles as a function of partial pressure and particle temperature. The Eulerian balance equations for mass, momentum, energy, and species mass fractions are adopted with the standard ${\kappa}-{\varepsilon}$ turbulence model, whereas the Lagrangian approach is used for the particulate phase for soot. The eddydissipation model is employed for the reaction rate for gaseous mixture, and the single-step first-order reaction model for the devolatilization process for coal. By comparing the numerical results with experimental ones, the models used here are confirmed and found to be one of good alternatives for simulating the combustion as well as radiative characteristics.

  • PDF

Understanding Coal Gasification and Combustion Modeling in General Purpose CFD Code (범용 CFD 코드에서 석탄 가스화 및 연소 모델링에 관한 이해)

  • Lee, Hoo-Kyung;Choi, Sang-Min;Kim, Bong-Keun
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.15-24
    • /
    • 2010
  • The purpose of this study is to assess approaches to modeling coal gasification and combustion in general purpose CFD codes. Coal gasification and combustion involve complex multiphase flows and chemical reactions with strong influences of turbulence and radiation. CFD codes would treat coal particles as a discrete phase and gas species are considered as a continuous phase. An approach to modeling coal reaction in $FLUENT^{(R)}$, selected in this study as a typical commercial CFD code, was evaluated including its devolatilization, gas phase reactions, and char oxidation, turbulence, and radiation submodels. CFD studies in the literature were reviewed to show the uncertainties and limitations of the results. Therefore, the CFD analysis gives useful information, but the results should be carefully interpreted based on understandings on the uncertainties associated with the modelings of coal gasification and combustion.

Evaluation of the empirical and structural coal combustion models in the IFRF no.1 Furnace (미분탄 탈휘발 및 촤반응 모델 평가)

  • Joung, Daero;Han, Karam;Huh, Kang Y.;Park, Hoyoung
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.217-219
    • /
    • 2012
  • This study describes 3D RANS simulation of a 2.1 MW swirling pulverized coal flame in a semi-industrial scale furnace. The simulation of pulverized coal combustion involves various models for complex physical processes and needs information of pyrolysis rate, the yields and compositions of volatiles and char especially in coal conversion. The coal conversion information can be acquired by the experiment or the pre-processor code. The empirical model based on the experiment of the IFRF and the structural model based on the pre-processor code of the PC-COAL-LAB were evaluated against the measurement data.

  • PDF

Numerical Investigation for Combustion Characteristics of Vacuum Residue in a Test Furnace

  • Sreedhara, S.;Huh, Kang-Y.;Park, Ho-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.121-127
    • /
    • 2006
  • It has become inevitable to search for alternative fuels due to severe energy crisis these days. Use of alternative fuels, which are typically of lower quality, tends to increase environmental pollution, including formation of nitrogen oxides (NOx). In this paper performance of vacuum residue has been investigated experimentally as well as numerically in typical operating conditions of a furnace. Heat release reaction is modeled as sequential steps of devolatilization, simplified gas phase reaction and char oxidation as that for pulverized coal. Thermal and fuel NOx are predicted by conditional estimation of elementary reaction rates and are compared against measured experimental data. On the overall reasonable agreement is achieved for spatial distributions of major species, temperature and NOx for all test cases.

  • PDF

3-Dimensional Model for Pulverized Coal Combustion (미분탄 연소로의 난류 유동장 및 반응장 해석을 위한 3차원 모델)

  • 이경옥;서경원;최병선
    • Journal of Energy Engineering
    • /
    • v.1 no.1
    • /
    • pp.76-86
    • /
    • 1992
  • A three-dimensional model has been developed for pulverized coal combusters and gasifiers. Coal devolatilization, heterogeneous char oxidation, gas particle interchange, radiation, gas phase oxidation, primary and secondary stream mixing, and heat losses are considered. A finite difference method was used to solve the ordinary non-linear differential equations. The effects of primary and secondary stream flow ratio and coal particle size are investigated.

  • PDF