• Title/Summary/Keyword: Devices parameters

Search Result 1,130, Processing Time 0.027 seconds

A study on determination of HTS power devices' parameters (초전도기기 주요 파라미터 선정에 관한 연구)

  • Lee, Seung-Ryul;Kim, Jong-Yul;Yoon, Jae-Young
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.34-38
    • /
    • 2006
  • There are many parameters that should be considered from the viewpoint of real power system operation and planning in designing HTS power devices. Especially, in the power system with HTS-FCL(fault current limiter) and TR(transformer), there is close correlation between parameters of the HTS power devices. This paper describes some considerations in determining parameters of HTS power devices, which are related to technical and economical aspects. The main parameters in this study are the quench resistance of HTS-FCL and the % impedance of HTS-TR. The results may give basic information for developing the devices.

Computer Simulation for High Voltage Thyristor Fabrication (고전압 사이리스터 제작을 위한 Computer Simulation)

  • Kim, Sang-Cheol;Kim, Eun-dong;Kim, Nam-kyun;Bahng, Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.243-246
    • /
    • 2001
  • Thyristor devices have 3-dimensional complicated structure and were sensitive to temperature characteristics. Therefore, it was difficult to optimize thyristor devices design. We have to consider many design parameter to characterize, and trade-off relations. The important parameters to design thyristor devices are cathode structure, effective line width, cathode-emitter shunt structure, gate structure, doping profile and carrier lifetime. So, we must consider that these design parameters were not acted separately. However, there are many difficulties to determine optimized design parameters by experiment. So, We used specific design software to design thyristor devices, and estimated the thyristor devices characteristics.

  • PDF

Influence of Device Parameters Spread on Current Distribution of Paralleled Silicon Carbide MOSFETs

  • Ke, Junji;Zhao, Zhibin;Sun, Peng;Huang, Huazhen;Abuogo, James;Cui, Xiang
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.1054-1067
    • /
    • 2019
  • This paper systematically investigates the influence of device parameters spread on the current distribution of paralleled silicon carbide (SiC) MOSFETs. First, a variation coefficient is introduced and used as the evaluating norm for the parameters spread. Then a sample of 30 SiC MOSFET devices from the same batch of a well-known company is selected and tested under the same conditions as those on datasheet. It is found that there is big difference among parameters spread. Furthermore, comprehensive theoretical and simulation analyses are carried out to study the sensitivity of the current imbalance to variations of the device parameters. Based on the concept of the control variable method, the influence of each device parameter on the steady-state and transient current distributions of paralleled SiC MOSFETs are verified separately by experiments. Finally, some screening suggestions of devices or chips before parallel-connection are provided in terms of different applications and different driver configurations.

Lightweight image classifier for CIFAR-10

  • Sharma, Akshay Kumar;Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.286-289
    • /
    • 2021
  • Image classification is one of the fundamental applications of computer vision. It enables a system to identify an object in an image. Recently, image classification applications have broadened their scope from computer applications to edge devices. The convolutional neural network (CNN) is the main class of deep learning neural networks that are widely used in computer tasks, and it delivers high accuracy. However, CNN algorithms use a large number of parameters and incur high computational costs, which hinder their implementation in edge hardware devices. To address this issue, this paper proposes a lightweight image classifier that provides good accuracy while using fewer parameters. The proposed image classifier diverts the input into three paths and utilizes different scales of receptive fields to extract more feature maps while using fewer parameters at the time of training. This results in the development of a model of small size. This model is tested on the CIFAR-10 dataset and achieves an accuracy of 90% using .26M parameters. This is better than the state-of-the-art models, and it can be implemented on edge devices.

A Study of Distance Relay Characteristic of Transmission Line including FACTS Devices (FACTS 기기가 설치된 송전선로에서 거리계전기의 응동특성)

  • Jung, Chang-Ho;Suh, Jung-Nam;Bang, Seong-Won;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.31-33
    • /
    • 2000
  • This paper discusses the operational characteristic analysis of distance relay depending on the power system parameters in transmission line including FACTS devices. Distance relay requires protective coordination because the FACTS devices change power system parameters to increase power transmission capacity. In this paper, the dynamic operational characteristics of distance relay are analyed for the effect of fault resistance and operation mode of FACTS devices according to the installed points of these devices.

  • PDF

Dynamic Thermal Rating of Transmission Line Based on Environmental Parameter Estimation

  • Sun, Zidan;Yan, Zhijie;Liang, Likai;Wei, Ran;Wang, Wei
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.386-398
    • /
    • 2019
  • The transmission capacity of transmission lines is affected by environmental parameters such as ambient temperature, wind speed, wind direction and so on. The environmental parameters can be measured by the installed measuring devices. However, it is impossible to install the environmental measuring devices throughout the line, especially considering economic cost of power grid. Taking into account the limited number of measuring devices and the distribution characteristics of environment parameters and transmission lines, this paper first studies the environmental parameter estimating method of inverse distance weighted interpolation and ordinary Kriging interpolation. Dynamic thermal rating of transmission lines based on IEEE standard and CIGRE standard thermal equivalent equation is researched and the key parameters that affect the load capacity of overhead lines is identified. Finally, the distributed thermal rating of transmission line is realized by using the data obtained from China meteorological data network. The cost of the environmental measurement device is reduced, and the accuracy of dynamic rating is improved.

The Development of Neuromuscular Electrical Stimulation Medical Devices for The Treatment of Non-implantable Urinary Incontinence (비이식형 요실금 치료용 신경근 전기자극 의료기기 개발)

  • Lee, Jae-Yong;Lee, Chang-Doo;Kwon, Ki-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • In this paper, the neuromuscular electrical stimulation medical devices for non-implantable incontinence treatment other than vaginal insertion type was developed and commercialized. The structure of medical devices for electrical stimulation based on the anatomy of the pelvic floor muscle designed. Then, the optimum parameters that may be effective in pelvic floor muscle electrical stimulation was set. The circuit system based on the optimum parameters were designed and manufactured. The frequency of the pulse voltage for electrical stimulation is 75[Hz], the pulse width is 300[${\mu}s$], the development of medical devices was to have seven program functions to the various treatments. The circuit system of medical devices was composed of microcontroller, comparator and converter. The performance of the developed circuit system in KTC(Korea Testing Certification) were carried out medical equipment inspection test. Test results, test specifications were satisfied with the medical device, the performance was verified to be commercialized as a medical device. The development of medical devices were validated risk assessment and product performance through a software validation. Commercialization of medical equipment was acquired to enable the certification standards of the international standard IEC 60601-1.

Design Variable Parametrization in Finite Element Models for Optimal Design of Electromagnetic Devices (전기기기의 최적설계를 위한 유한요소모델의 설계변수 매개화)

  • Kim, Chang-Hyun;Kim, Chang-Wook;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.146-148
    • /
    • 1998
  • For the shape design of electromagnetic devices using the FEM, the choice of design parameters influence to the success of the optimization process. If the design parameter distribution has a one to one corespondence with finite element model, we can encounter not only serious accuracy problem but also obtain a zigzag shape along the interface. The nodes between those design parameters can be parameterized by interpolating using one among many interpolation methods. The conventional parameterization of design parameters has a limit of application for shape, because design parameters and movable nodes are linearly intepolated. In this paper, using the B-spline curve that use to present any interfaces in computer graphics, the curvilinear parameterization between design parameters and node points is compared with the linear parameterization.

  • PDF

Inline concept for thin film encapsulated PLED and smOLED devices

  • Hemerik, Marcel;Ligter, Marcel;Lange, Rudiger;Verheijen, Johan;Rens, Ban Van
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1769-1774
    • /
    • 2006
  • A fully integrated inline OLED production system is presented. The performance of PLED devices that are encapsulated with a thin film multilayer stack are compared to conventionally encapsulated devices with glas/dessicant protection. The observed luminance decay is the same in both cases. The lifetime performance of the thin film encapsulation is measured and critical parameters are discussed. The first smOLED devices produced on the OTB equipment are presented and comparison with other smOLED devices shows very good results.

  • PDF

Application-aware Design Parameter Exploration of NAND Flash Memory

  • Bang, Kwanhu;Kim, Dong-Gun;Park, Sang-Hoon;Chung, Eui-Young;Lee, Hyuk-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.291-302
    • /
    • 2013
  • NAND flash memory (NFM) based storage devices, e.g. Solid State Drive (SSD), are rapidly replacing conventional storage devices, e.g. Hard Disk Drive (HDD). As NAND flash memory technology advances, its specification has evolved to support denser cells and larger pages and blocks. However, efforts to fully understand their impacts on design objectives such as performance, power, and cost for various applications are often neglected. Our research shows this recent trend can adversely affect the design objectives depending on the characteristics of applications. Past works mostly focused on improving the specific design objectives of NFM based systems via various architectural solutions when the specification of NFM is given. Several other works attempted to model and characterize NFM but did not access the system-level impacts of individual parameters. To the best of our knowledge, this paper is the first work that considers the specification of NFM as the design parameters of NAND flash storage devices (NFSDs) and analyzes the characteristics of various synthesized and real traces and their interaction with design parameters. Our research shows that optimizing design parameters depends heavily on the characteristics of applications. The main contribution of this research is to understand the effects of low-level specifications of NFM, e.g. cell type, page size, and block size, on system-level metrics such as performance, cost, and power consumption in various applications with different characteristics, e.g. request length, update ratios, read-and-modify ratios. Experimental results show that the optimized page and block size can achieve up to 15 times better performance than the conventional NFM configuration in various applications. The results can be used to optimize the system-level objectives of a system with specific applications, e.g. embedded systems with NFM chips, or predict the future direction of NFM.