• Title/Summary/Keyword: Developmental competence

Search Result 215, Processing Time 0.02 seconds

Caffeine treatment during in vitro maturation improves developmental competence of morphologically poor oocytes after somatic cell nuclear transfer in pigs (돼지 난자의 체외성숙에서 Caffeine 처리가 난자 성숙과 체세포 핵이식 배아의 체외발육에 미치는 영향)

  • Lee, Joohyeong;You, Jinyoung;Lee, Hanna;Shin, Hyeji;Lee, Geun-Shik;Lee, Seung Tae;Lee, Eunsong
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.131-138
    • /
    • 2017
  • In most mammals, metaphase II (MII) oocytes having high maturation promoting factor (MPF) activity have been considered as good oocytes and then used for assisted reproductive technologies including somatic cell nuclear transfer (SCNT). Caffeine increases MPF activity in mammalian oocytes by inhibiting p34cdc2 phosphorylation. The objective of this study was to investigate the effects of caffeine treatment during in vitro maturation (IVM) on oocyte maturation and embryonic development after SCNT in pigs. To this end, morphologically good (MGCOCs) and poor oocytes (MPCOCs) based on the thickness of cumulus cell layer were untreated or treated with 2.5 mM caffeine during 22-42, 34-42, or 38-42 h of IVM according to the experimental design. Caffeine treatment for 20 h during 22-42 h of IVM significantly inhibited nuclear maturation compared to no treatment. Blastocyst formation of SCNT embryos was not influenced by the caffeine treatment during 38-42 h of IVM in MGCOCs (41.1-42.1%) but was significantly improved in MPCOCs compared to no treatment (43.4 vs. 30.1%, P<0.05). No significant effects of caffeine treatment was observed in embryo cleavage (78.7-88.0%) and mean cell number in blastocyst (38.7-43.5 cells). The MPF activity of MII oocytes in terms of p34cdc2 kinase activity was not influenced by the caffeine treatment in MGCOCs (160.4 vs. 194.3 pg/ml) but significantly increased in MPCOCs (133.9 vs. 204.8 pg/ml). Our results demonstrate that caffeine treatment during 38-42 h of IVM improves developmental competence of SCNT embryos derived from MPCOCs by influencing cytoplasmic maturation including increased MPF activity in IVM oocytes in pigs.

Effects of Cycloheximide on Development of In Vitro Matured Porcine Oocytes Activated following Eelectric Pulse (전기자극 후 Cycloheximide 처리가 돼지난자의 활성화에 미치는 효과)

  • 송상현;정기화;조헌조;박충생
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.1
    • /
    • pp.79-85
    • /
    • 2002
  • We investigated the optimal concentration and exposure time of cycloheximide(CHX) on development of activated porcine oocytes following electrical pulse(EP). After 42~44 h maturation, oocytes were treated with 0.1% hyaluronidase, and denuded cumulus cells by pipetting. Oocytes were stimulated by electric pulse (1.2 kV/cm, 30 $\mu$sec, 1 pulse) or incubated for 3, 5 and 7 h in cycloheximide (1, 5 and 10 $\mu\textrm{g}$/$m\ell$, respectively) following electric pulse, and cultured for 8 days. Cleavage rate of oocytes activated with 10 $\mu\textrm{g}$/$m\ell$ CHX following EP was significantly (P<0.05) higher than those of 1 $\mu\textrm{g}$/$m\ell$ (86.8% vs. 74.4%). The developmental competence of oocytes incubated to 5 $\mu\textrm{g}$/$m\ell$ of CHX was significantly (P<0.05) higher development to blastocysts (13.3%), compared with 10 $\mu\textrm{g}$/$m\ell$ of CHX (5.6%). When the oocytes were activated with 5$\mu\textrm{g}$/$m\ell$ CHX for 3, 5, and 7 h following EP, the cleavage rate of oocytes in 5 h group(86.6%) was significantly (P<0.05) higher than that in 3 h group(73.2%). The developmental rate of oocytes to morula in 5 and 7 h groups(26.7% and 16.4%) were significantly (P<0.05) high than that in 3 h group(14.5%). Matured oocytes were activated with electric pulse (EP) or electric pulse combined with cycloheximide (EP + CHX) and cultured for 8 days. The rate of cleavage and development to blastocyst (80.1% and 11.6%) of activated with EP group were similar to EP combined with CHX group. When activated with EP or EP combined with CHX, the mean cell number of blastocysts were less in the activated with EP (18.67$\pm$5.53) than in the activated EP combined CHX (20.71$\pm$6.16), but not significantly different. This results suggest that, when the porcine oocytes were activated with CHX following EP, the developmental rate of activated oocytes can be improved by treated with a concentration of 5 $\mu\textrm{g}$/$m\ell$ CHX for 5 h exposure time.

In Vitro Development of Bovine Nuclear Transfer Embryos Reconstructed with Fetal Fibroblasts (태아 섬유아세포로 재구성된 핵치환 소 수정란의 체외발달)

  • Koo, D.B.;Choi, Y.H.;Park, J.S.;Kim, H.N.;Kang, Y.K.;Lee, C.S.;Han, Y.M.;Park, H.D.;Lee, K.K.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.407-417
    • /
    • 2000
  • The present study was to examine effects of various electrical stimulus treatments used for electro-fusion on the preimplantation development of bovine nuclear transfer (NT) embryos with fetal fibroblast cells. Fetal fibroblast cells were isolated from one fetus at day 45 of gestation in Holstein cow, and passaged 3 to 4 times before being transferred into enucleated oocytes. Single fibroblast cells were individually placed into the perivitelline space of enucleated oocytes by using a micromanipulator. At first, the fusion and developmental rates of reconstructed oocytes were compared between different electric stimulation conditions. When fusion of the reconstructed oocyte was induced by different electric pulse periods (15, 30 and 45 $\mu$sec) at a DC pulse of 1.8 kV/cm, 15 (45.5%, 120/264) or 30 $\mu$ sec group (43.9%, 106/241) showed a higher fusion rate than 45 $\mu$sec group (23.2%, 58/250, P<0.05). However, no difference was detected in the development rate of the fused oocytes to blastocysts between groups. Next experiment was to examine the effects of different electrical field strengths (1.5, 1.8 and 2.1 kV/cm) for 15 $\mu$sec at electrofusion on in vitro development of the NT embryos. As results, there was no difference in the fusion and developmental rates of the NT embryos between electrical strength (P>0.05). Finally, developmental competence of bovine NT embryos with somatic cells was compared with IVF-derived embryos. Of enucleated oocytes fused with fibroblast cells, 27.4% (75/274) developed to the blastocyst stage, which is similar to that (24.5%, 58/237) of IVF-derived embryos. However, mean nuclei number of NT blastocysts was smaller than that of IVF-derived blastocysts. Thus, we have established an optimal condition (1.8 kV/cm, 15 $\mu$sec) for electric fusion of bovine NT oocytes with somatic cells. The present study indicates that bovine reconstructed embryos with somatic cells normally develop to blastocyst stage in vitro, although having smaller nuclei numbers of blastocysts as compared to IVF-derived embryos.

  • PDF

Siberian Sturgeon Oocyte Extract Induces Epigenetic Modifications of Porcine Somatic Cells and Improves Developmental Competence of SCNT Embryos

  • Kim, So-Young;Kim, Tae-Suk;Park, Sang-Hoon;Lee, Mi-Ran;Eun, Hye-Ju;Baek, Sang-Ki;Ko, Yeoung-Gyu;Kim, Sung-Woo;Seong, Hwan-Hoo;Campbell, Keith H.S.;Lee, Joon-Hee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.266-277
    • /
    • 2014
  • Somatic cell nuclear transfer (SCNT) has generally demonstrated that a differentiated cell can convert into a undifferentiated or pluripotent state. In the SCNT experiment, nuclear reprogramming is induced by exposure of introduced donor nuclei to the recipient cytoplasm of matured oocytes. However, because the efficiency of SCNT still remains low, a combination of SCNT technique with the ex-ovo method may improve the normal development of SCNT embryos. Here we hypothesized that treatment of somatic cells with extracts prepared from the germinal vesicle (GV) stage Siberian sturgeon oocytes prior to their use as nuclear donor for SCNT would improve in vitro development. A reversible permeability protocol with $4{\mu}g/mL$ of digitonin for 2 min at $4^{\circ}C$ in order to deliver Siberian sturgeon oocyte extract (SOE) to porcine fetal fibroblasts (PFFs) was carried out. As results, the intensity of H3K9ac staining in PFFs following treatment of SOE for 7 h at $18^{\circ}C$ was significantly increased but the intensity of H3K9me3 staining in PFFs was significantly decreased as compared with the control (p<0.05). Additionally, the level of histone acetylation in SCNT embryos at the zygote stage was significantly increased when reconstructed using SOE-treated cells (p<0.05), similar to that of IVF embryos at the zygote stage. The number of apoptotic cells was significantly decreased and pluripotency markers (Nanog, Oct4 and Sox2) were highly expressed in the blastocyst stage of SCNT embryos reconstructed using SOE-treated cells as nuclear donor (p<0.05). And there was observed a better development to the blastocyst stage in the SOE-treated group (p<0.05). Our results suggested that pre-treatment of cells with SOE could improve epigenetic reprogramming and the quality of porcine SCNT embryos.

Epigenetic Responses Programmed by Prenatal Stress : $F_1$ Male Rat Model (출생 전 스트레스에 의해 프로그램된 후생학적 반응 : $F_1$ 수컷 흰쥐 모델)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.12 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • The efficient strategies to cope with unpredictable and/or harmful environmental changes have been developed by every organism in order to ensure its survival and continuity of it's own species. As a results, all living things on earth maintain dynamically internal stability via a process termed 'homeostasis' among physiological parameters despite of external environment changes. Stress is an emotional and physical response to threat homeostasis. Stress may have not only transient but rather permanent effect on the organism; recent evidence clearly show that prenatal stress could organize or imprint permanently physiological systems without any change in genetic codes, a process known as 'epigenetic programming'. In this review, a series of reproduction-associated events occurred in prenatally stressed male rats such as alteration in the structure of sexually dimorphic brain regions, modification of neurotransmitter metabolism, changes in reproductive endocrine status, and finally, disorders of sexual behavior will be introduced. The fetal brain is highly sensitive to prenatal programming and glucocorticoids in particular have powerful brain-programming properties. The chronic hyperactivation of fetal brain by maternal stress-induced glucocorticoid input will provide new program via increasing the neuroplasticities. This 'increased neuroplasticities' will be the basis for the 'increased phenotypic plasticities' rendering the organism's better adaptation to environmental challenges. In conclusion, organism who experienced 'harsh' environment in his fetal life seems to give up a certain portion of reproductive competence to make good chance of survival in his future life by epigenetic (re)programming.

  • PDF

Consideration on Domestic Production of Materials and Consumables for Human IVF-ET Program (체외수정 및 배아이식술 관련 재료 및 소모품의 국산화 필요성에 대한 고찰)

  • Cha, Byung-Hun;Jun, Jin-Hyun
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.385-391
    • /
    • 2011
  • Human in vitro fertilization and embryo transfer (IVF-ET) program is a general procedure for infertile couples since first successful delivery on 1978 in UK and Korean first on 1985. Recently in Korea, more than 42,000 cases per year of IVF-ET were performed and showed good pregnancy rates compared worldwide data. The human IVF-ET procedure use many consumables, such as ovum pick-up (OPU) needles, centrifuge tubes, culture dish, ICSI pipette, culture media and ET catheters. Major of these materials are supported by the global companies. Thus, Korean IVF-ET program might be placed unstable situation by global economical risks. These uncertain problems could be overcome by the domestic production of IVF-ET materials and consumables. Two times questionnaires for Korean clinicians and researchers about the domestic production were performed and analyzed. Many of them requested domestic OPU needles, ET catheters, culture media and ICSI pipettes under good quality control and quality assurance system. This trial may be contributed to industrialization and to global competence of Korean IVF-ET program. The results of this survey can be provide a fundamental base for development and production of domestic materials and consumables for human IVF-ET program.

Altering of Collagens in Early Pregnant Mouse Uterus (착상전 생쥐 자궁에서 콜라겐의 변화)

  • Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.11 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • Specific endometrial preparation should occur during periimplantation period. That is a progress of serial differentiation and is absolute in implantation of embryo and successful pregnancy. Remodeling of tissues shown during embryogenesis is regulated by various factors including extracellular matrix (ECM). Marked changes during pregnancy are including embryo migration, decidual response, and differentiation of placenta in placental animals including human. These changes to successful implantation in embryo and uterus have to prepare the competence for attachment of embryo and uterus, and invasion defense of uterus. During these changes, ECM dramatically changes for maintaining the uterine and embryonic functions. The major component of most connective tissue is collagens. It is very complex and hard to explore the mechanisms for ECM modulation. Recently using high throughput methodology, PCR-select cDNA subtraction method, microarray, many candidate genes have been identified. Steroid hormones have fundamental role in implantation and maintenance of pregnancy. Dermatopontin, a regulator of collagen accumulation, is regulated spatio-temporally in the uterus by primarily progesterone through progesterone receptors at the time of implantation. Modulation of extracellular matrix is critically regulated by cascade of gene net-works which are regulated by cascade of sex steroid hormones. Pathological regulation of uterine extracellular matrix reported in diabetic patients. To know the extracellular modulation is essential to understanding implantation, feto-placental development and overcome the paths involved in female reproduction. Though ECM composed with very various components and it is complex, the present review focused on the fate of collagens during periimplantation period.

  • PDF

Antioxidant Effect of Edaravone on the Development of Preimplantation Porcine Embryos against Hydrogen Peroxide-Induced Oxidative Stress

  • Do, Geon-Yeop;Kim, Jin-Woo;Chae, Sung-Kyu;Ahn, Jae-Hyun;Park, Hyo-Jin;Park, Jae-Young;Yang, Seul-Gi;Koo, Deog-Bon
    • Journal of Embryo Transfer
    • /
    • v.30 no.4
    • /
    • pp.289-298
    • /
    • 2015
  • Edaravone (Eda) is a potent scavenger of inhibiting free radicals including hydroxyl radicals ($H_2O_2$). Reactive oxygen species (ROS) such as $H_2O_2$ can alter most kinds of cellular molecules such as lipids, proteins and nucleic acids, cellular apoptosis. In addition, oxidative stress from over-production of ROS is involved in the defective embryo development of porcine. Previous study reported that Eda has protective effects against oxidative stress-like cellular damage. However, the effect of Eda on the preimplantation porcine embryos development under oxidative stress is unclear. Therefore, in this study, the effects of Eda on blastocyst development, expression levels of ROS, and apoptotic index were first investigated in preimplantation porcine embryos. After in vitro fertilization, porcine embryos were cultured for 6 days in PZM medium with Eda ($10{\mu}M$), $H_2O_2$ ($200{\mu}M$), and Eda+$H_2O_2$ treated group, respectively. Rate of blastocyst development was significantly increased (P<0.05) in the Eda treated group compared with only $H_2O_2$ treated group. And, we measured intracellular levels of ROS by DCF-DA staining methods and investigated numbers of apoptotic nuclei by TUNEL assay analysis is in porcine blastocyst, respectively. Both intracellular ROS levels and the numbers of apoptotic nucleic were significantly decreased (P<0.05) in porcine blastocysts cultured with Eda ($10{\mu}M$). More over, the total cell number of blastocysts were significantly increased (P<0.05) in the Eda-treated group compared with untreated group and the only $H_2O_2$ treated group. Based on the results, Eda was related to regulate as antioxidant-like function according to the reducing ROS levels during preimplantation periods. Also, Eda is beneficial for developmental competence and preimplantation quality of porcine embryos. Therefore, we concluded that Eda has protective effect to ROS derived apoptotic stress in preimplantation porcine embryos.

Effect of Bovine Follicular Fluid and Hormones on In Vitro Oocyte Fertilization and Development of Bovine Embryos (소의 난포액과 호르몬이 난포란의 체외수정 및 체외발달에 미치는 영향)

  • 최양석;송상현;최창용;하란조;강다원;최상용;윤창현;박충생
    • Journal of Embryo Transfer
    • /
    • v.12 no.2
    • /
    • pp.181-188
    • /
    • 1997
  • This study was carried out to determine the effect of bovine follicular fluid(bFF), hormones, and fetal bovine serum(FBS) supplemented in the medium on the in vitro fertilization and development of bovine embryos. The ovaries were obtained from a local abattoir and placed in physiological saline kept at 30~32˚C and brought to the laboratory within 3~4 hours. The oocytes and follicular fluid were collected by aspiration from visible follicles, and the oocytes of grades I on the basis of the morphology of cumulus cells attached and the homogeneity of cytoplasmic granules were selected and used for maturation. The basal media used for oocyte maturation, fertilization and embryo development in vitro were Ham' F-10, TALP and TCM-199, respectively. The hormones supplemented in maturation medium were consisted of 35 pg /ml FSH, 10 pg /ml LH and 1 pg/mi estradiol-l7$\beta$. The bFF collected from 5~9 mm follicles was centrifuged, filtered and inactivated by heat-treatment at 56˚C for 30 min. FBS also was inactivated with the same method and kept at -20˚C until use. The embryos were co-cultured with the monolayer of bovine oviductal epithelial cells at 39˚C under 5% $CO_2$ in air for 9 days. The results obtained were summarized as follows: The fertilization rate of oocytes was found 87.4% from 10% FBS and hormones treatment for IVM, and 37.1% of these TVF embryos were developed to blastocyst stage in 10% FBS groups. Compared with this control system, the fertilization rate was decreased significantly(P<0.05) in the maturation without either FBS or hormones. These IVF embryos were developed to morula stage at the similar rate, but to blastocyst at significantly(P<0.05) lower rate in the embryo culture with or without FBS supplementation. The fertilization rate(82.9%) in hormones and 10% inactivated bFF was similar with 10% FBS and hormone groups(87.4%), but decreased significantly(P<0.05) in 20 or 30% bFF (61.0 or 66.0%), respectively. In vitro developmental competence to blastocyst stage in 10% FBS and 20% inactivated bFF(37.1% and 31.4%) was higher than in 10 or 30% inactivated bFF(20.0 or 19.2%) or 10, 20 and 30% fresh bFF(19.1, 21.0 and 17.5%) The results indicated that the in vitro fertillzation and development rate of the embryos should be improved in 10% FBS or 20% inactivated culture system and 20% inactivated bFF might be available economically for bovine oocyte maturation and embryo culture instead of fetal bovine serum.

  • PDF

Characterizations of the bovine subtype Interferon-tau Genes : Sequences of Genes and Biological Activity of Transcription Factors in JEG3 Cell

  • Kim, Min-Su;Min, Kwan-Sik;Seong, Hwan-Hoo;Kim, Chan-Lan;Kim, Dongkyo;Imakawa, Kazuhiko;Kim, Sung Woo
    • Journal of Embryo Transfer
    • /
    • v.31 no.4
    • /
    • pp.335-347
    • /
    • 2016
  • Multiple interferon tau (IFNT) genes exist in bovine. An antiluteolytic substance secreted by the bovine conceptus and primarily responsible for maternal recognition of pregnancy is bovine trophoblast protein 1 (bIFNT1), a new type I interferon tau (IFNT) genes. The objectives of this research were to investigate whether multiple, distinct gene encode bIFNT1 and other type I bIFNT gene in the bovine genome and to examine expression of bIFNT1 and other bIFNTc1 mRNAs during conceptus development. These transcrips could be regulated through caudal-related homeobox-2 (CDX2) and ETS2 and/or AP1 (JUN) expression, a transcription factor implicated in the control of cell differentiation in the trophectoderm. The presence of mRNAs encoded by bIFNT1 and type I bIFNTc1 genes were examined quantitatively via reverse transcription-polymerase chain reaction (RT-PCR) analysis of total cellular RNA (tcRNA) extracted from on day 17, 20 and 22 bovine conceptuses. The expression level of bIFNT1 was higher on day 17 transcripts were gradually weakly detectable on day 20 and 22. However, the other bIFNTc1 gene examined transcripts was highly expressed on day 20 and transcripts were weakly detectable on day 17 and 22 bovine conceptuses. Furthermore, human choriocarcinoma JEG3 was co-transfected with an -1kb-bIFNT1/c1-Luc constructs and several transcription factor expression plasmids. Compared to each -1kb-bIFNT1/c1-Luc increased when this constructs were co-transfected with, ETS2, AP1(JUN), CREBBP and/or CDX2. Also, bIFNTc1 gene was had very effect on activity by alone ETS2, and AP1 (JUN) expression factors in choriocarcinoma JEG3 cell. However, bIFNT1 gene expression of the upstream region was not identified. We demonstrated that the activities of bIFN genes are regulated by differential, tissue-specific and developmental competence during pregnancy.