• Title/Summary/Keyword: Developmental Culture

Search Result 841, Processing Time 0.023 seconds

Effect of Gonadotropin Releasing Hormone-Agonist on Apoptosis of Luteal Cells in Pregnant Rat (Gonadotropin Releasing Hormone-Agonist가 임신된 흰쥐 황체세포의 세포자연사에 미치는 영향)

  • 양현원;김종석;박철홍;윤용달
    • Development and Reproduction
    • /
    • v.6 no.2
    • /
    • pp.131-139
    • /
    • 2002
  • Since GnRH and its receptor genes are expressed in the ovary, it has been suggested that ovarian GnRH might be involved in the regulation of ovarian function and the apoptosis of ovarian cells. However, it was not known well on the expression and function of GnRH and its receptor in the corpus luteum. The present study was undertaken to investigate whether GnRH and its receptor are expressed in luteal cells and GnRH has any effect on the apoptosis of luteal cells. Luteal cells obtained from the pregnant rats were cultured and stained for GnRH and its receptor proteins. Cultured luteal cells showed distinct immunoreactivity against both anti-GnRH and anti-GnRH receptor antibodies. In addition, the presence of GnRH receptor protein in cultured cells was confirmed by Western blot analysis. To investigate the effect of GnRH on the apoptosis of luteal cells, luteal cells were cultured in the presence of 10$^{-6}$ M GnRH-agonist(GnRH-Ag) for 3, 8, and 12h. TUNEL assay showed that the number of cells undergoing apoptosis increased 12h after culture(P<0.05). DNA fragmentation analysis confirmed the results such that the cells treated for 12h showed the greatest increase of fragmentation(p<0.05). Further, Western blot analysis of cytochrome c in the mitochondrial and cytoplasmic fractions of the luteal cells showed that GnRH-Ag treatment increased the content of cytochrome c in cytoplasm. These results demonstrate that the luteal cells express GnRH and its receptor and GnRH-Ag treatment induces apoptosis of the luteal cells via mitochondrial release of cytochrome c. The present study suggest that the releasing of cytochrome c from mitochondria might be involved in the luteal cell apoptosis induced by GnRH-Ag.

  • PDF

Effects of Bisphenol and Octylphenol on TM3 Cell : Expression of Cytochrome P450scc and Estrogen Receptor $\alpha$ mRNA (Bisphenol과 Octylphenol이 TM3 세포에 미치는 영향: Cytochrome P450scc와 Estrogen Receptor $\alpha$ 유전자의 발현)

  • 이호준;김묘경;강희규;김동훈;한성원;고덕성
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.215-220
    • /
    • 2000
  • Most of endocrine disrupters (EDs) have been reported to exhibit estrogenic or anti-androgenic activity and thereby may disrupt reproductive development in human or wildlife. This study was performed to investigate the effects of estrogen (E$_2$), bisphenol (BP) and octylphenol (OP) on the mouse Leydig cell line (TM3). TM3 originated from testis of 11~13-daly-old BALB/c nu/+ mice was cultured in DMEM supplemented with 10% FBS alone or medium with estrogen (E$_2$), bisphenol (BP) and octylphenol (OP; 1 pM, 1 nM, 1 $\mu$M, 1 mM, respectively) for 48 hours. After culture, total cell number and viability were assessed by heamocyto-meter and trypan blue stain. Expression of cytochrome P450scc (CYPscc) mRNA whose product is involved in steroid hormone biosynthesis and estrogen receptor $\alpha$(ER $\alpha$) mRNA were detected by RT-PCR. As a result, treatment of TM3 with E$_2$, BP and OP(1 mM, respectively) significantly decreased the viability but not all of groups as high as 1 $\mu$M. Exposure of TM3 to OP significantly reduced the total cell number but not E$_2$ or BP. The expression of CYPscc mRNA was slightly reduced in BP (1 nM, 1 $\mu$M) and significantly decreased in OP (1 nM, 1 $\mu$M) treated TM3, except E$_2$ group. But the expression of ER $\alpha$ mRNA was sightly increased in all treated groups. In conclusion, BP and OP (high concentration) might inhibit steroidogenesis by decreasing the CYPscc mRNA expression in the mouse testis. These results suggest that BP and OP might impair spermatogenesis and subsequently disturb testicular function.

  • PDF

Mouse Embryonic Stem Cell Uptakes of Buforin 2 and pEP-1 Conjugated with EGFP (생쥐 배아 줄기세포의 Buforin 2 및 pEP-1에 결합된 EGFP의 세포 내 수송)

  • Jung, Su-Hyun;Park, Seong-Soon;Lim, Hyun-Jung;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.11 no.2
    • /
    • pp.111-119
    • /
    • 2007
  • Differentiation of cells can be induced through modulation of endogenous regulators using exogenous factors. Useful transfection systems to transport a specific exogenous regulator into cell have been tried but still there are many obstacles to overcome. In this study, we examined the transfection efficiency of cell permeable peptides (CPPs) in mouse embryonic stem cell under the various conditions. To identify the CPP-mediated translocation of a protein, we employed recombinant CPP-enhanced green fluorescent protein (EGFP). Viability of R1 cells was different between experimental groups depending on the kind of CPP and the concentration of CPP-EGFP. Translocation of CPP-EGFPs into the R1 cells was not detected until 30 min after CPP-EGFPs treatment in all groups. After 1 hr, translocation of pEP-1-EGFP-N was detected, but it could not be detected in the other group. Transfection of pEP-1EGFP-N was independent on its concentration. The time course did not show saturation even after 24 hr in pEP-1-EGFP-N. These results showed that the permeability depended on the kind of CPP and the location of His-tag in the case of examined CPPs, and did not need biological energy. On summary, the efficiency of transfection of CPP-EGFP depends on the CPP sequences but the culture time is not a key factor in transfection for the mouse embryonic stem cell. For the future studies to improve the efficiency of translocation of protein into embryonic stem cells, it is needed to develop modified CPP or mediator. The studies would be very useful to induce the differentiation of embryonic stem cells.

  • PDF

Effects of Donor Somatic Cell Conditions on In Vitro Development of Nuclear Transplanted Porcine Embryos (돼지 공여세포의 조건이 핵이식 수정란의 체외발달에 미치는 영향)

  • 홍승표;박준규;이명열;이지삼;정장용
    • Journal of Embryo Transfer
    • /
    • v.16 no.3
    • /
    • pp.213-221
    • /
    • 2001
  • This study was conducted to examine in vitro developmental ability of porcine embryos after somatic cell nuclear transfer. The porcine ear fell was cultured in vitro for confluency in serum-starvation condition(TCM-199 + 0.5% FBS) far 3~6 days of cell confluency. The zona pellucida of IVM oocytes were partially drilled using laser system. Single somatic cell was individually transferred into enucleated oocytes. And the reconstructed embryos were electrically fused(single DC 1.9kv/cm, 30$\mu$ sec) with 0.3M mannitol. After electrofusion, embryos were activated(single AC 5v/mm, 5sec) and cultured in HCSU-23 medium containing 10% FBS at 39$^{\circ}C$, 5% $CO_2$ in air for 6 to 8 days. The fusion rate of donor cells was 45.6, 36.8 and 46.1% in 3~4, 5~6 days of serum starvation and non serum starvation(N-S), and were 52.7. 53.0 and 51.7% in 1~2. 5~6 and 13~14 passages of donor cell culture, respectively. No significant difference was found in the fusion rate of donor cells by the duration of serum starvation treatment or the number of donor cell passages. By the size of donor cells, however, the fusion rate was significantly higher(P<0.05) for reconstructed embryos derived from 25r $\mu$m $\geq$ site of donor cells (65.3%) than that of 25~30$\mu$ m(42.5%) or 30$\mu$ m(45.5%)$\leq$ cells. The cleavage rate was significantly (P<0.05) higher in 3~4 darts of serum starvation treatment(67.1%) than that in N-S (50.7%) or 5~6 days of starvation(57.1%). The activation rate by the size of donor cells in fused oocytes was 56.5, 68.8 and 58.5%, respectively, and was not significant.

  • PDF

Recent Advancement in the Differentiation of Tissues and Organs and Regulation of Gene Expression (조직.기관의 분화와 유전자 발현의 조절, 최근의 진보)

  • Harn, Chang-Yawl
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.1
    • /
    • pp.1-35
    • /
    • 1997
  • Fertilized egg, by successive cell divisions, differentiates into different tissues and organs with various structures and functions. Different cells and tissues contain different proteins, products of selective gene expression. Not all the genes in any genomes are equally active, temporal and spatial gene expression being the general rule. Present paper attempts to review the tanscriptional mechanisms or the initiations of transcription from several angles. In some of the organisms the genes in the process of transcription or the genes in the inactive state can be seen under the light microscope. Some bands of Drosophila polytene chromosomes may exhibit a swollen or puff appearance under certain conditions. A puff, unfolded or decondensed form of chromomere, represents sets of intense transcriptional activity or RNA synthesis. The heterochromatic X chromosome whose genes remain inactive in the female mammals can be visualized as a dark staining structure called Barr body, Configuration of chromatin differs between transcribed and nontranscribed chromatin. Modification to the chromatin facilitates RNA synthesis. The movement of large polymerase molecule along the DNA would probably be facilitated if some modifications of the chromatin configuration is effected. Methylation of cytosines in CG sequences is associated with inactive genes. Methylation can play a role in determination of mammalian cells during embryogenesis. Demethylation is necessary for the gene to be expressed during development A histone modification that is also known to be correlated with transcriptional capacity of chromatin is acetylation of the lysine residues of the core histones. Chromatin containing a high level of histone acetylation is very sensitive to DNase 1. For the transcription to occur TBP must first bind to the TATA box. Another TF, TF IIB, then binds to the promoter-TBP complex, facilitating the access of RNA polymerase to the transcription initiation site. As recently as eight years ago researchers assumed that histones were irrelevant to the regulation of gene expression. Histones combine with the DNA to form nucleosome of the chromatin. Histones are vital participant in gene regulation. Histone and basal factors compete for access to TATA box. When DNA is exposed to basal factors before histones are introduced, the basal factors assemble on TATA boxes preventing the access of histones, allowing transcription to occur, for transcription to begin, activator protein at the upstream activation sequence or enhancer must interact with the tail of histone H4 at TATA box and cause the histone role particle to dissociate from the TATA box leading to partial breakup of the histone core particle and allowing the basal factors to bind to the TATA box. New concept of genomic flux in contrast to the old concept of static genome has been developed based on the powerful new molecular techniques. Genomic changes such as repetitive DNAs and transposable elements, it is assumed but not yet proved, may affect some of the developmental patterns that characterize particular cells, tissues, organs, and organisms. In the last decade or so remarkable achievement have been made in the researches of the structures and functions of TFs and the specific target sequences located in promoters or enhancers where these TFs bind. TFs have independent domains that bind DNA and that activate transcription. DNA binding domain of TFs serves to bring the protein into the right location. There are many types of DNA binding domains. Common types of motifs can be found that are responsible for binding to DNA. The motifs are usually quite short and comprise only a small part of the protein structure. Steroid receptors have domains for hormone binding, DNA binding, and activating transcription. The zinc finger motif comprises a DNA binding domain. Leucine zipper consist of a stretch of amino acids with a leucine residue in every seventh position Two proteins form a dimer because they interact by means of leucine zippers on similar α-helical domain. This positions their DNA binding basic domains for interaction with the two halves of a DNA sequence with dyad symmetry of TGACTCA, ACTGAGT.

  • PDF

Studies on the Embryo Transfer of In Vitro Matured/ In Vitro Fertilized Embryo in Hanwoo (한우 체외성숙.체외수정란의 수정란이식에 관한 연구)

  • 황환섭;장현용;김성곤;김종택;박춘근;정희태;김정익;양부근
    • Journal of Embryo Transfer
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • These studies were carried out to improve the reproductive efficiency through embryos transfer of Hanwoo IVM/IVF embryos. Following routine IVM/IVF procedure, oocytes and zygotes were cultured far 40 to 44 h in CRlaa medium with BSA. Then 2 to 8-cell embryos were removed the cumulus cell and were cultured in CRlaa medium containing 10% fatal bovine serum and 2.5 mM taurine in 5% $O_2$ and 5% $CO_2$ at 38.5$^{\circ}C$. The fresh embryos of the morulae and blastocysts cultured for 6 to 9 days in vitro or the frozen-thawed embryos were transferred into recipients. The pregnancy rates of the blastocyst produced for 6, 7, 8, and 9 days in vitro culture were 59.4, 68.2, 66.0 and 100%, respectively. In the developmental stage, pregnacy rates of early blastocysts (61.1%), blastocysts(64.7%) and expanded blastocysts(69.5%) were higher than that of morulae stage(20.0%). The pregnancy rates according to the corpus luteum grades of A, B and C in recipients were 73.6, 62.9 and 50.0%, respectively. Effects of donor-recipients synchrony of after day 2, 1 and 0, before day 1 and 2 on the pregnancy rates were 35.7, 65.5, 72.6, 67.9 and 60.0%, respectively. Pregnancy rates of the body condition score of recipients $\leq$2(71.3%) were higher than those of $\geq$3.0 score(40.0%). The pregnancy rates according to the parity of recipients when embryo was transferred to cow(70.6%) was higher than in heifer(59.1%). The pregnancy rates according to hormone treatment before embryo transfer were 69.9% in hCG + GnRH administration group and 63.0% in control group. Fresh and frozen-thawed embryos on the pregnancy rates were 70.6 and 36.4%, respectively. Pregnancy rates in single and AI+single was 90.0% and 64.8%. Pregnancy rates in twin induction was better than in single. These results indicate that pregnancy rates after transfer were affected on the embryo ages, donor-recipient synchrony, body condition score of recipients, corpus luteum status, parity and hormone treatment to recipients.

Carbohydrate Metabolism in Preimplantation Stage Embryos and the Role of Metabolites (착상전 초기 배아에서 탄수화물 대사와 그 대사물의 역할)

  • Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.19-30
    • /
    • 2008
  • Proper development of fertilized oocyte to blastocyst is a key step in mammalian development to implantation. During development of preimplantation embryos, the mammalian embryo needs supply the energy substrate for keep viability. Usually mammalian oocyte get substrate especially energy substrate from oviduct and uterus, because it does not store much substrate into cytoplasm during oogenesis. Carbohydrates are known as a main energy substrate for preimplantation stage embryos. Glucose, lactate and pyruvate are essential component in preimplantation embryo culture media and there are stage specific preferences to them. Glucose transporter and $H^+$-monocarboxylate cotransporter are a main mediator for carbohydrate transport and those expression levels are primarily under the control of intrinsic or extrinsic factors like insulin and glucose. Other organic substances, amino acids, lipids and nucleotides are used as energy substance and cellular regulation factor. Though since 1960s, successful development of fertilized embryo to blastocyst has been accomplished with chemically defined medium for example BWW and give rise to normal offspring in mammals, the role of metabolites and the regulation of intermediary metabolism are still poorly understood. Glucose may permit expression of metabolic enzymes and transporters in compacting morula, capable of generating the energy required for blastocyst formation. In addition, it has been suggested that the cytokines can modulate the metabolic rate of carbohydrate in embryos and regulate the preimplantation embryonic development through control the metabolic rate. Recently we showed that lactate can be used as a mediator for preimplantation embryonic development. Those observations indicate that metabolites of carbohydrate are required by the early embryo, not only as an energy source, but also as a key substrate for other regulatory and biosynthetic pathways. In addition metabolites of carbohydrate may involve in cellular activity during development of preimplantation embryos. It is suggested that through these regulation and with other regulation mechanisms, embryo and uterus can prepare the embryo implantation and further development, properly.

  • PDF

Differentiation of Dopaminergic and Cholinergic Neurons from Mesenchymal-like Stem Cells Derived from the Adipose Tissue (사람 지방 유래 중간엽 줄기세포의 도파민성 및 콜린성 신경세포분화)

  • Hong, In-Kyung;Jeong, Na-Hee;Kim, Ju-Ran;Do, Byung-Rok;Kim, Hea-Kwon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.31-39
    • /
    • 2008
  • Neural tissue has limited intrinsic capacity of repair after injury, and the identification of alternate sources of neural stem cells has broad clinical potential. We isolated mesechymal-like stem cells from human adipose tissues (AT-MSCs), and studied on transdifferentiation-promoting conditions in neural cells. Dopaminergic and cholinergic neuron induction of AT-MSCs was also studied. Neural differentiation was induced by adding bFGF, EGF, dimethyl sulphoxide (DMSO) and butylated hydroxyanisole(BHA) in N2 Medium and N2 supplement. The immunoreactive cells for $\beta$-tubulin III, a neuron-specific marker, GFAP, an astrocyte marker, or Gal-C, an oligodendrocyte marker, were found. AT-MSCs treated with bFGF, SHH and FGF8 were differentiatied into dopaminergic neurons that were immunopositive for TH antibody. Differentiation of MSCs to cholinergic neurons was induced by combined treatment with basic fibroblast growth factor (bFGF), retinoic acid (RA) and sonic hedgehog (Shh). AT-MSCs treated with DMSO and BHA rapidly assumed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including neuro D1, $\beta$-tubulin III, GFAP and nestinwas markedly elevated during this acute differentiation. While the stem cell markers such as SCF, C-kit, and Stat-3 were not expressed after preinduction medium culture, we confirmed the differentiation of dopaminergic and cholinergic neurons by TH/$\beta$-tubulin III or ChAT/ $\beta$-tubulin III positive cells. Conclusively, AT-MSCs can be differentiated into dopaminergic and cholinergic neuronsand these findings suggest that AT-MSCs are alternative cell source of treatment for neurodegenerative diseases.

  • PDF

ICM-Trophectoderm Cell Numbers of Bovine IVM/IVF/IVC Blastocysts (체외성숙, 수정 및 체외배양에서 생산된 소 배반포기배의 ICM과 Trophectoderm세포수에 관한 연구)

  • 김은영;엄상준;김선의;윤산현;박세필;정길생;임진호
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.1
    • /
    • pp.27-34
    • /
    • 1996
  • The objective of this study was to examine the cell number of Total, ICM and TE cells of bovine blastocysts according to development progression cultured in CR1 medium, which was reported as successfully supporting medium for preimplantaion bovine embryo development to the blastocyst stage, by differential labelling of the nuclei with immunosurgery and polynucleot-ide-specific fluorochromes. Blastocysts were obtained at day 8 after in vitro fertilization and classified to early, middle, expanded stage according to the developmental morphology; blastocoel expansion and zona thickness. Also, bias tocysts in the same category were divided into two parts to check the Total cell number by using bisbenzimide only and ICM, TE and Total cell number by using immunosurgery and two polynucleotide-specific fluorochromes. 1) The development rate of blastocysts at day 8 after in vitro fertilization was 29.3% and classified bIas tocysts to early, middle, expanded and hatching stage were 8.7, 9.9, 7.6 and 3.1%, respectively. 2) The numbers of total blastomere using bisbenzimide in the classified blastocysts to early, middie and expanded were 46.9${\pm}$8.6, 66.2${\pm}$12.5 and 122.8 ${\pm}$ 14.4, respectively. This indicated that CR1 is a appropriate culture medium for bovine embryo development. 3) The count of ICM and TE cell number by using differential labelling with immunosurgery and polynucleotide-specific fluorochromes in the classified blastocysts to early, middle and expanded; ICM cell numbers of were 12.8${\pm}$5.9, 26.3${\pm}$8.4 and 35.5${\pm}$15.0, respectively and TE cell numbers were 30.5${\pm}$5.0, 4 41.3${\pm}$8.2 and 81.1${\pm}$13.4, respectively. These results presented that the increase of ICM and TE cell numbers averaged two and three doublings between early and expanded blastocyst stage and also total cell number counted from ICM nuclei and TE nuclei by using differential label-ling showed the increase pattern with development advance level and the results were similar to total cell number obtained from bisbenzimide treatment only. Therefore, the differential labelling of ICM and TE nuclei in situ is a very useful technique to evaluate embryo qualities and can be used as an indicator on study of preim-plantation embryo development.

  • PDF

Distribution and Ecology of Marsh Clam in Gyeongsangbuk-do II. Reproductive Cycle and Larval Development of the Corbicula japonica (경상북도 재첩자원 분포 및 생태 조사 II. 일본재첩 Corbicula japonica의 생식주기 및 유생발생)

  • 변경숙;정의영
    • The Korean Journal of Malacology
    • /
    • v.17 no.1
    • /
    • pp.45-55
    • /
    • 2001
  • Gametogenes, reproductive cycle, first sexual maturity(biological minimum size), sex ratio and larval development of the marsh clam Corbicula japonica were investigated monthly by histological observations. Samples were collected in brackish water of Gokgang stream, Kyungsangbuk-Do, Korea, from August 1997 to July 1998. Sexuality of Corbicula japonica is dioecious and the species are an oviparous clam. The gonads are irregularly arranged from the sub-region of mid-intestinal gland in visceral cavity to reticular connective tissue of foot. The ovary is composed of a number of ovarian sac which are branched arborescent. Oogonia actively proliferate along the germinal epithelium of ovarian sac, in which young oocytes are growing. The testis is composed of a number of testicular tubules, and the epithelium of the tubule has function of germinal epithelium, along which spermatogonia actively proliferate. A great number of undifferentiated mesenchymal tissue and eosinophilic granular cells are abundantly distributed between developing oocytes and spermatocytes in the early developmental stages. With the further development of the ovary and testis these tissue and cells gradually disappear. Then the undifferentiated mesenchymal tissue and eosinophilic granular cells are considered to be related to the growing of the oocytes and spermatocytes. The spawning period is from July to September, and the main spawning occur between July and August when seawater temperatures reach above 22$^{\circ}C$. The reproductive cycle of this species can be divided into five successive stages; early active (February to April), late active (May to July), ripe (June to September), partially spawned (July to September), degenerative (September to October) and resting stage (October to February). Percentages of first sexual maturity of female and male clams ranging in length from 10 mm to 12 mm are over 50% and 100% for clams over 16.0 mm in shell length. Fertilized eggs or Corbicula japonica were 80-90 ${\mu}{\textrm}{m}$ in diameter. In the early embryonic development of C. japonica, the appearance of polar body, trochophore and D-shaped veliger were observed around 40 min., 27 hours and 4 days after spawning, respectively, at a water temperature of 26.5-28.$0^{\circ}C$. The size of larvae of early umbo stage was about 185-210 ${\mu}{\textrm}{m}$ in shell length, 160-180 ${\mu}{\textrm}{m}$ in shell height around 7 days after fertilization. The correlation of relative growth between the culture day (D) and shell length (SL) was expressed by the following simple formula from D-shaped veliger to metamorphosing stage; SL = 13.300D + 209.36($r^2$= 0.9078).

  • PDF