• Title/Summary/Keyword: Development of Vehicle Chassis

Search Result 82, Processing Time 0.027 seconds

Development of Tire Vertical Force Estimation Algorithm in Real-time using Tire Inner Surface Deformation (타이어 내부 표면 변형량을 이용한 타이어 수직하중 실시간 추정 알고리즘 개발)

  • Lee, Jaehoon;Kim, Jin-Oh;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.142-147
    • /
    • 2013
  • Over the past few years, intelligent tire is developed very actively for more accurate measurement of real-time tire forces generated during vehicle driving situation. Information on the force of intelligent tire could be used very usefully to chassis control systems of a vehicle. Intelligent tire is based on deformation of tire's inner surface from the waveform of a SAW, or Surface Acoustic Wave. The tire vertical force is estimated by using variance analysis of sensor signals. The estimated tire vertical force is compared with the tire vertical force generated during vehicle driving situation in real-time environment. The scope of this paper is a correlation study between the measured sensor signals and the tire vertical force generated during vehicle driving situation.

Development of New Numerical Model and Controller of AFS System (AFS 시스템의 새로운 수학적 모델 및 제어기 개발)

  • Song, Jeonghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.59-67
    • /
    • 2014
  • A numerical model and a controller of Active Front wheel Steer (AFS) system are designed in this study. The AFS model consists of four sub models, and the AFS controller uses sliding mode control and PID control methods. To test this model and controller an Integrated Dynamics Control with Steering (IDCS) system is also designed. The IDCS system integrates an AFS system and an ARS (Active Rear wheel Steering) system. The AFS controller and IDCS controller are compared under several driving and road conditions. An 8 degree of freedom vehicle model is also employed to test the controllers. The results show that the model of AFS system shows good kinematic steering assistance function. Steering ratio varies depends on vehicle velocity between 12 and 24. Kinematic stabilization function also shows good performance because yaw rate of AFS vehicle tracks the reference yaw rate. IDCS shows improved responses compared to AFS because body side slip angle is also reduced. This result also proves that AFS system shows satisfactory result when it is integrated with another chassis system. On a split-m road, two controllers forced the vehicle to proceed straight ahead.

Development of Diagnosis System for Hub Bearing Fault in Driving Vehicle (차량 주행 상태에서 허브 베어링 이상을 진단할 수 있는 장치 개발)

  • Im, Jong-Soon;Park, Ji-Hun;Kim, Jin-Yong;Yun, Han-Soo;Cho, Yong-Bum
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.72-77
    • /
    • 2011
  • In this paper, we propose effective diagnosis algorithm for hub bearing fault in driving vehicle using acceleration signal and wheel speed signal measured in hub bearing unit or knuckle. This algorithm consists of differential, envelope and power spectrum method. We developed diagnosis system for realizing proposed algorithm. This system consists of input device including acceleration sensor and wheel speed sensor, calculation device using Digital Signal Processor (DSP) and display device using Personal Digital Assistant (PDA). Using this diagnosis system, a driver can see hub bearing fault(flaking) from the vibration in driving vehicle. With early repairing, he can keep good ride feeling and prevent accident of vehicle resulting from hub bearing fault.

Design Optimization of Automotive Rear Cross Member with Cold-rolled Ultra High Strength Steel (냉연 초고강도강 적용 차량용 리어 크로스 멤버 형상 설계 변수 최적화)

  • J. Y. Kim;S. H. Kim;D. H. Choi;S. Hong
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.103-111
    • /
    • 2024
  • With the increasing global interest in carbon neutrality, the automotive industry is also transitioning to the production of eco-friendly cars, specifically electric vehicles. In order to achieve comparable driving distances to internal combustion engine vehicles, the application of high-capacity battery packs has led to an increase in vehicle weight. To achieve light-weighting and durability requirements of automotive components simultaneously, there is a demand for research on the application of Ultra-High Strength Steel (UHSS). However, when manufacturing chassis components using UHSS, there are challenges related to fracture defects due to lower elongation compared to regular steel sheets, as well as spring-back issues caused by high tensile strength. In this study, a simulated specimen that is not affected by the property changes of four materials was designed to improve formability of the rear cross member, which is the most challenging automotive chassis component. The influence and correlation of material-specific variables were analyzed through finite element analysis (FEA) for each material with tensile strength of 440, 590, 780, and 980 MPa grades, resulting in the development of a predictive equation. To validate the equation, the simulated specimens of 980 MPa grade were produced from the test molds. Then the reliability of the FEA and predictive equation was verified with measured specimen data using a 3D scanner. The results of this study can be proposed to improve the formability of UHSS chassis components in future researches.

A study on the estimation of acoustic performance of exhaust system with 3 dimensional visco-convective wave equation and dopplerized algorithm (3차원 대류 파동 방정식과 도플러 알고리즘을 이용한 배기계의 소음 성능 예측에 관한 연구)

  • Jang, Jin-Man;Kim, June-Wan;Kim, Joong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.821-832
    • /
    • 2011
  • Recently, the noise of vehicle is the one of the key factors for customers to purchase a vehicle and the most important part which is related to the noise is the exhaust system. Thus, car makers have their own ways to assess this exhaust noise not only to decrease the level of noise but to enhance the feeling of it. Typically, to do these things in the early stage of development, the tuning code of the exhaust system has to be made by CAE tool, which is very reliable but expensive, and the prototype parts of this code would be made for the validation test. Then this process can be iterated to meet the target of the performance. In this study, a new algorithm which adapts the '3 dimensional convective sound wave theory 'and 'Doppler effect' has been developed. With this new algorithm, a brand new system for the calculation of tail pipe noise has been developed and validated by acoustic wind tunnel test. As a result of this study, various comparisons and have been carried out, for example, the comparison with other CAE tool has been performed for the validity and the improvement of the new calculation code could be achieved.

  • PDF

A Study on the Dynamic Characteristics of Door Module Plate (도어 모듈 플레이트의 동특성 분석에 관한 연구)

  • Bae, Chul-Yong;Kim, Wan-Su;Kim, Chan-Jung;Lee, Bong-Hyun;Jang, Woon-Sung;Mo, Yu-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.853-861
    • /
    • 2007
  • Currently, automotive industries improve the vehicle performance and reduce the development period of vehicle using each module part for the high quality and performance of vehicles. However each component part doesn't generate the noise and vibration problems, sometime these problems are generated on the assembly status between vehicle chassis frame and each module part. On this study, in order to analysis the dynamic characteristics of a shield door module that is a typical module part of vehicles, the acquisition and evaluation process about the vibration and noise of shield door module is developed. Also the possibility to apply to shield door module of the developed process is verified by the comparison with the dynamic characteristics between plastic and steel module plate.

Development of Lightweight Composite Sub-frame in Automotive Chassis Parts Considering Structure & NVH Performance (구조 및 NVH 성능을 고려한 복합재료 서브프레임 개발)

  • Han, Doo-Heun;Ha, Sung
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Recently, according to environmental regulations, the automobile industry has been conducting various research on the use of composite materials to increase fuel efficiency. However, there has not been much research on lightweight chassis components. Therefore, in this research, the purpose of this study is to apply composite materials to the sub-frame of chassis components to achieve equivalent levels of stiffness, strength, NVH performance and 50% lightweight compared to the steel sub-frame. First, the Natural frequency of steel and composite specimens was compared to the damping characteristics of composite materials. Then, in this study, the Lay-up Sequence was derived to maximize the stiffness and strength of the sub-frame by applying composite materials. And this lay-up Sequence is proposed to avoid heat shrinkage due to curing during manufacturing. This process was designed based on a FEM structural analysis, and a Natural frequency and frequency response function graph was confirmed based on a modal analysis. The prototype type composite sub-frame was manufactured based on the design and the F.E.M analysis was verified through a modal experiment. Furthermore, it was fitted to the actual vehicle to verify the natural frequency and the indoor noise vibration response, including idling and road noise. This result was confirmed to be equivalent to the steel sub-frame. Finally, the composite sub-frame weight was confirmed to be about 50% of the steel sub-frame.

A Study on Cross Member Strength Improvement of Korean Light Tactical Vehicle (한국형 전술차량 크로스멤버 강도개선에 관한 연구)

  • Kim, Sung-Gon;Kim, Sun-Jin;Shin, Cheol-Ho;Kang, Tae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.758-764
    • /
    • 2019
  • The chassis of the Korean light tactical vehicle adopts a frame-on-body structure that uses lightweight design technology in terms of equipment operating characteristics. Military vehicles are operated in much harsher conditions compared to civilian vehicles, including mountainous terrain, especially steep slopes. Due to this characteristic, frame-welded cracks were found on some military vehicles. Therefore, in this paper, road damage analysis was conducted by identifying various roads including the military unit's road. The result confirmed that the operating environment of some military units' tactical road was much harsher than the endurance road test condition. A solution was derived through defect analysis, design review, and actual vehicle driving test. This study can be used as a reference by suggesting the development direction for the durability test of a new vehicle.

Analysis of Durability of Vehicle Chassis Part in Virtual Test Lab (가상내구시험을 통한 차량 샤시 부품 내구성 예측에 관한 연구)

  • Cho, ByungKwan;Ha, Jungho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.747-752
    • /
    • 2013
  • Recently, virtual test laboratory techniques have been widely used to reduce vehicle development costs and time. In this study, a virtual durability test process using multibody dynamics simulation and fatigue simulation is proposed. The flexible multibody model of the front half of a car suspension is solved using road loads that are measured from durability test courses such as a Belgian road. To verify the simulation results, the measured loads of components and simulation results are collated.

A Study on the Body Attachment Stiffness for the Road Noise

  • Kim Ki-Chang;Kim Chan-Mook
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1304-1312
    • /
    • 2005
  • The ride and noise characteristics of a vehicle are significantly affected by the vibration transferred to the body through the chassis mounting points in the engine and suspension. It is known that body attachment stiffness is an important factor of idle noise and road noise for NVH performance improvement. The body attachment stiffness serves as a route design aimed at isolating the vibration generated inside the car due to the exciting force of the engine or road. The test result of the body attachment stiffness is shown in the FRF curve data; the stiffness level and sensitive frequency band are recorded by the data distribution. The stiffness data is used for analyzing the parts that fail to meet the target stiffness at a pertinent frequency band. The analysis shows that the target frequency band is between 200 and 500 Hz. As a result of the comparison in a mounted suspension, the analysis data is comparable to the test data. From these results, there is a general agreement between the predicted and measured responses. This procedure makes it possible to find the weak points before a proto car is produced, and to suggest proper design guidelines in order to improve the stiffness of the body structure.