• Title/Summary/Keyword: Developing flow

Search Result 1,005, Processing Time 0.038 seconds

Developing Framework Model for Economic Renewal and Exchange of Geo-Spatial Data - A Case Study of Daegu Metropolitan City - (지리공간자료의 경제적 갱신과 교환체계를 위한 모형개발 - 대구광역시를 사례로 -)

  • Nam, Hyeong-Geun;Sakong, Ho-Sang;Um, Jung-Sup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.138-154
    • /
    • 2008
  • Geo-special technologies are being adopted in variety fields since the 3rd NGIS plan that was started at 1996. However, the required system or structure to guarantee the up-to-date validity and accuracy of the geospatial data - the most fundamental elements of the technology - was not constructed yet. All the activities related to geospatial data, including topographical map and numerical base map, are all implemented in separate way; from change of geographical objects and features, data gathering, and database construction to distribution, transfer and sharing of these data. The data model that links all the activities are required that enables consistent data-flow and effective and systematic work-flow. In this study, economic data renewal and exchange method was proposed, and benefit-cost analysis was implemented by comparing the conventional work-flow to newly proposed work-flow. The case study was implemented using the model that was adopted in Daegu metropolitan city, and the model was developed by reflecting these results.

  • PDF

Flow Characteristics of the Boundary Layer Developing over a Turbine Blade Suction Surface (터빈 동익 흡입면에서 발달하는 경계층의 유동특성)

  • Chang, Sung Il;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.795-803
    • /
    • 2015
  • The boundary layer developing over the suction surface of a first-stage turbine blade for power generation has been investigated in this study. For three locations selected in the region where local thermal load changes dramatically, mean velocity, turbulence intensity, and one-dimensional energy spectrum are measured with a hot-wire anemometer. The results show that the suction-surface boundary layer suffers a transition from a laminar flow to a turbulent one. This transition is confirmed to be a "separated-flow transition", which usually occurs in the shear layer over a separation bubble. The local minimum thermal load on the suction surface is found at the initiation point of the transition, whereas the local maximum thermal load is observed at the location of very high near-wall turbulence intensity after the transition process. Frequency characteristics of turbulent kinetic energy before and after the transition are understood clearly from the energy spectrum data.

Development of Portable AIDS Diagnosis Device (휴대용 AIDS 검사기기 개발)

  • Singh, Birendra Kumar;Tae, Gun-Sik;Sung, Yeon-Moon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.211-215
    • /
    • 2021
  • It is estimated that there are 40 million people with AIDS worldwide, with most cases occurring mainly in developing countries. HIV, the virus that causes AIDS, is infected with CD4+ T cells in the blood and gradually destroys CD4+ T cells for several months to 10 years, thereby lowering the patient's immune function. AIDS patients who have weakened immunity in this way will die from various diseases. The current method for counting the number of CD4+ T cells is usually performed by flow cytometry. The flow cytometry method has the advantage of high accuracy, but it is difficult to use in developing countries because it requires skilled professionals and equipment is expensive. As a result of this study, a device for AIDS screening was developed by capturing leukocytes from a small amount of 5 ㎕ blood through a microfilter and analyzing CD4+ T cells and CD8+ T cells from the captured cells. cheaper and easier to carry and use than current test equipment.

PERFORMANCE CHARACTERISTICS OF A PROTON EXCHANGE MEMBRANE FUEL CELL(PEMFC) WITH AN INTERDIGITATED FLOW CHANNEL

  • Lee, P.H.;Cho, S.A.;Han, S.S.;Hwang, S.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.761-769
    • /
    • 2007
  • The configuration of the flow channel on a bipolar plate of a proton exchange membrane fuel cell(PEMFC) for efficient reactant supply has great influence on the performance of the fuel cell. Recent demand for higher energy density fuel cells requires an increase in current density at mid voltage range and a decrease in concentration overvoltage at high current density. Therefore, an interdigitated flow channel where mass transfer rate by convection through a gas diffusion layer is greater than the mass transfer by a diffusion mechanism through a gas diffusion layer was recently proposed. This study attempts to analyze the i-V performance, mass transfer and pressure drop in interdigitated flow channels by developing a fully three dimensional simulation model for PEMFC that can deal with anode and cathode flow together. The results indicate that the trade off between performance and pressure loss should be considered for efficient design of flow channels. Although the performance of the fuel cell with interdigitated flow is better than that with conventional flow channels due to a strong mass transfer rate by convection across a gas diffusion layer, there is also an increase in friction due to the strong convection through the porous diffusion layer accompanied by a larger pressure drop along the flow channel. It was evident that the proper selection of the ratio of channel and rib width under counter flow conditions in the fuel cell with interdigitated flow are necessary to optimize the interdigitated flow field design.

Experimental study of unsteady thermally stratified flow (비정상 열확산 현상 의 실험적 연구)

  • 이상준;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.767-776
    • /
    • 1985
  • Unsteady thermally stratified flow caused by two-dimensional surface discharge of warm water into a oblong channel was investigated. Experimental study was focused on the rapidly developing thermal diffusion at small Richardson number. The basic objective were to study the interfacial mixing between a flowing layer of warm water and an underlying body of cold water and to accumulate experimental data to test computational turbulence models. Mean velocity field measurements were carried out by using NMR-CT (Nuclear Magnetic Resonance-Computerized Tomography). It detects quantitative flow image of any desired section in any direction of flow in short time. Results show that at small Richardson number warm layer rapidly penetrates into the cold layer because of strong turbulent mixing and instability between the two layers. It is found that the transfer ofheat across the interface is more vigorous than that of momentum. It is also proved that the NMR-CT technique is a very valuable tool to measure unsteady three dimensional flow field.

Reviewing the Applications of Three Countries' Ground Water Flow Modeling Regulatory Guidelines to Nuclear Facilities in Korea

  • Lee, Chung-Mo;Hamm, Se-Yeong;Hyun, Seung Gyu;Cheong, Jae-Yeol;Wei, Ming Liang
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.1-9
    • /
    • 2017
  • The numerical analysis of groundwater flow is indispensable for predicting problems associated with water resource development, civil works, environmental hazards, and nuclear power plant construction. Korea lacks public regulatory procedures and guidelines for groundwater flow modeling, especially in nuclear facility sites, which makes adequate evaluation difficult. Feasible step-by-step guidelines are also unavailable. Consequently, reports on groundwater flow modeling have low-grade quality and often present controversial opinions. Additionally, without public guidelines, maintaining consistency in reviewing reports and enforcing laws is more challenging. In this study, the guidelines for groundwater flow modeling were reviewed for three countries - the United States (Documenting Groundwater Modeling at Sites Contaminated with Radioactive Substances), Canada (Guidelines for Groundwater Modelling to Assess Impacts of Proposed Natural Resource Development Activities), and Australia (Australian Groundwater Modelling Guidelines), with the aim of developing groundwater flow modeling regulatory guidelines that can be applied to nuclear facilities in Korea, in accordance with the Groundwater Act, Environmental Impact Assessment Act, and the Nuclear Safety Act.

A study on climate design using cold air flow to reduce air contaminant concentration of underground garage in the apartment complex (냉기류를 이용하여 공동주택단지 내 지하주차장 오염농도를 저감하는 기후 디자인에 관한 연구)

  • Kim, Tae Han;Cho, Kyung Hak;Chroi, Ji Hye;Kim, Seog cheol
    • KIEAE Journal
    • /
    • v.11 no.1
    • /
    • pp.29-38
    • /
    • 2011
  • This study suggested practical application of climate design on apartment complex with the focus on the use of Cold Air Flow and green building design method. The domestic research on the wind path analysis has been associated since the early 21th century in urban planning and site planning, this initiative study aimed to mitigate the urban heat island effect and to promote the sustainable urban development. It is, however, mostly focused on the flow analysis and heat flow in the urban context, due to the poor application of the wind path analysis in actual planning and design. Special attention is paid to the possibilities of identifying and developing the application methods in relation to Cold Air Flow and building design. This study examined these relations and suggested some trenchant approach to a more comprehensive and efficient use of the wind flow analysis in climate design.

Runner Design and Internal Flow Characteristics Analysis for an Ns=200 Francis Hydro Turbine Model

  • Hwang, Yeong-Cheol;Chen, Zhenmu;Choi, Young-Do;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.8
    • /
    • pp.698-703
    • /
    • 2016
  • Francis hydro turbines have been most widely used throughout the world because of their wide range of head and flow rate applications. In most applications, they are used for high heads and flow rates. Currently, Korea is developing technology for Francis hydro turbine design and manufacture. In order to understand the internal details of Francis hydro turbines further, a new Francis turbine model runner is designed and model internal flow characteristics are investigated. The specific speed of the Francis hydro turbine model runner is $Ns=200m-kW-min^{-1}$. The runner blade is designed successfully according to the port area and one-dimensional loss analysis. The best efficiency point of the Francis hydro turbine model achieves 90% at the design condition. CFD analysis yields a hill chart of the Francis hydro turbine model for use in predicting performance.

Numerical calculation of Laminar flow in a Square Duct of 90° Bend (정사각형 단면을 갖는 90° 곡관의 층류유동 계산)

  • Kim H. T.;Kim J. J.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • A FA-FD hybrid method, developed for solving three-dimensional incompressible Navier-Stokes equations, is applied to calculate three-dimensional laminar flows through a square duct with a 90° bend. The method discretizes the convective terms in the primary flow direction with 3rd-order upwind finite-differences and the convective and diffusive terms in the transverse directions with the two-dimensional finite analytic method. The non-staggered grid system is used and the pressure-velocity coupling is achieved by a global iteration procedure based on the PISO algorithm. Detailed comparisons between the computed solutions and the available experimental data are given mainly for the velocity distributions at cross-sections in a 90° bend of a square duct with both fully developed and developing entry flows. Although the computational result shows generally a good agreement with the experimental data, there are some significant discrepancies underlining the necessity of more accurate numerical methods as well as reliable experimental data for their validation.

  • PDF

A Study of Static Pressure Differential Measurement of Nozzle for Miniaturization of a Air Flow Meter (풍량 측정 장치 소형화를 위한 노즐 정압차 측정 연구)

  • Oh, Sang-Teak;Kim, Young Il;Chung, Kwang-Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.414-419
    • /
    • 2016
  • Air flow measurement is a fundamental and important task for testing, adjusting, and balancing of HVAC system. However, it is difficult to carry out in the field due to the large size and weight of the flow meter. In this study, for the purpose of developing a small and portable flow meter, we proposed a different method of static pressure measurement and verified it experimentally. In the proposed method, static pressure difference was measured by inserting a tube inside the chamber before and after the nozzles. The results were compared with measurements according to the ANSI/ASHRAE standard. The results were in good agreement, indicating that the inserted tube method could be used for static pressure measurement of a portable flow meter. The proposed method eliminates the pressure tubes that are attached outside, which results in smaller size and easy handling.