• Title/Summary/Keyword: Deuteron

Search Result 9, Processing Time 0.024 seconds

Evaluation of Photonuclear Data of Mo, Zn, S and Cl for Applications

  • Lee, Young-Ouk;Han, Yin-Lu;Lee, Jeong-Yeon;Chang, Jogn-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.529-540
    • /
    • 1999
  • As part of IAEA CRP on "Compilation and evaluation of photonuclear data for applications", we evaluated photoproduction data of Mo, Zn, S and Cl isotopes for medical use and biological applications. Available experimental data were collected and their discrepancies were analyzed to select or reconstruct the representative data set. The photoabsorption cross sections were then evaluated tv applying the Giant Dipole Resonance (GDR) model for the energies below about 30 MeV and the quasi-deuteron model for energies below 140 MeV. The resulting representative photoabsorption data were given as input for the theoretical calculations for the emission process of light nuclei including neutron, proton, deuteron, triton, $^3He$, alpha particles and gamma rays by use of the Hauser-Feshbach and the preequilibrium model.

  • PDF

Proton and Deuteron Spin-Lattice Relaxation in Gaseous HD (HD 기체에서의 수소 및 중수소 원자핵 스핀-격자 완화시간에 관한 핵자기공명 연구)

  • ;R. E. Norberg
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.1
    • /
    • pp.52-55
    • /
    • 1994
  • The proton and deuteron spin-lattice relaxation times, $T_{1}(H)$ and $T_{1}(D)$, have been measured in HD between 30 K and 313 K in the pressure of 0.67 - 1.92 atm. The nuclear magnetic resonance frequencies are respectively 358.012 MHz for a proton and 58.958 MHz for a deuteron. From the measurements of $T_{1}(H)$ and $T_{1}(D)$ the ratio of the correlation times ${\tau}_{1}\;and\;{\tau}_{2}$ that are associated with the molecular angular momentum operators was obtained. The nuclear spin-lattice relaxation time at J = 1 state has been observed to have a temperature dependence being proportional to $T^{0.25}$.

  • PDF

New Nuclear Fusion for Our Second Generations

  • Ho-Jin Choi;Koan-Sik Joo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.421-424
    • /
    • 1999
  • In this short report (before the authors would like to introduce an important application for one of the techniques of complex angular momentunm, say, Regge Pole approach, to nuclear fusion reaction for Light-ions: it will be reported in forthcoming papers), two kinds of thermalnuclear fusion reaction sources are introduced and discussed (A) the case of fusion: the production of neutron and target of Deuteron and (B) the case of fusion: the production of proton and target of Deuteron. Nuclear fusion reactions for Light-ions , such as the thermalnuclear energy sources and fuel cycles, are already well known. Fusion reactions are widely known as being extremly important and nationally vital (in point of view of nuclear weapons we must reconsider seriously development and building of such dangerous weapons) for our next generations in the future. This paper (a topics in review) is concerned with a simple introduction about a new nuclear fusion reaction of the above case of (B) for the second generation. Typical thermalnuclear fusion reactions which result in the release of huge amount of energy are nuclear stripping reactions:

  • PDF

Measurement of Gamma-ray Yield from Thick Carbon Target Irradiated by 5 and 9 MeV Deuterons

  • Araki, Shouhei;Kondo, Kazuhiro;Kin, Tadahiro;Watanabe, Yukinobu;Shigyo, Nobuhiro;Sagara, Kenshi
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.16-20
    • /
    • 2017
  • Background: The design of deuteron accelerator neutron source facilities requires reliable yield estimation of gamma-rays as well as neutrons from deuteron-induced reactions. We have so foar measured systematically double-differential thick target neutron yields (DDTTNYs) for carbon, aluminum, titanium, copper, niobium, and SUS304 targets. In the neutron data analysis, the events of gamma-rays taken simultaneously were treated as backgrounds. In the present work, we have re-analyzed the experimental data for a thick carbon target with particular attention to gamma-ray events. Materials and Methods: Double-differential thick target gamma-ray yields from carbon irradiated by 5 and 9 MeV deuterons were measured using an NE213 liquid organic scintillator at the Kyushu University Tandem accelerator Laboratory. The gamma-ray energy spectra were obtained by an unfolding method using FORIST code. The response functions of the NE213 detector were calculated by EGS5 incorporated in PHITS code. Results and Discussion: The measured gamma-ray spectra show some pronounced peaks corresponding to gamma-ray transitions between discrete levels in residual nuclei, and the measured angular distributions are almost isotropic for both the incident energies. Conclusion: PHITS calculations using INCL, GEM, and EBITEM models reproduce the spectral shapes and the angular distributions generally well, although they underestimate the absolute gamma-ray yields by about 20%.

Design Study of an Axial Injection System for MC50 Cyclotron at KIRAMS

  • Kim, Jae-Hong;Cho, Sung-Jin;Choi, Jun-Yong;Hong, Seung-Pyo;Yu, In-Gong;Park, Hyun;Lee, Ji-Sup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.262-262
    • /
    • 2012
  • A multi-purpose cyclotron, MC50 has been operated to provide multi-ions of proton, deuteron and alpha at Korea Institute of Radiological and Medical Sciences (KIRAMS). Neutron is also produced through the (p,n) nuclear process with a Be target. However, a wide spectrum of current of ions is requested by beam users for carrying their various application fields. Therefore a simulation study is requested on the design of an axial injection system for high current proton and alpha beam extraction for radio-isotope productions and scientific researches. The purpose of this study is seeking a relatively simple method for the MC50 having higher alpha beam capability and also improving proton and deuteron beams currently used. We are considering two possibilities to improve the internal ion source and to install a new external axial injection system. The external injection system will be consisted of an Einzel lens, a steering magnet, a buncher, and a glazer lens placed in front of an inflector, which is located at the center of the main magnet.

  • PDF

Microdomain Formation in Phosphatidylethanolamine Bilayers Detected by $^2H$ NMR

  • 박장수;김앙드레;정인철;서홍숙;심윤보;강신원
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.683-688
    • /
    • 1999
  • In deuterium NMR spectra of phosphatidylethanolamine bilayers with an extremely high content of saturated fatty acids, each C1 deuteron of the glycerol backbone gave rise to a doublet. This suggests the presence of two backbone conformations, the exchange between which is slow on an NMR time scale. The origin of the two conformations has been investigated in this work using saturated 1,2-diacyl-sn-glycero-3-phosphoethanolamine specifically deuterated in the glycerol backbone. The results showed that the two conformations originate from different domains, which have different fatty acid compositions. The differential scanning calorimetry of the bilayers suggested that the size of the domain is not large enough to show an independent phase transition. Thus, the formation of microdomains in the phosphatidylethanolamine bilayers has been concluded. Conformational difference in different domains was shown to be restricted to the C1 position of the glycerol backbone. The microdomains of phosphatidylethanolamine were retained even in the presence of other phospholipids.

Calculation of Proton-Induced Reactions on Tellurium Isotopes Below 60 MeV for Medical Radioisotope Production

  • Kim, Doohwan;Jonghwa Chang;Yinlu Han
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.361-371
    • /
    • 2000
  • The 123Te(p,n)123I, 124Te(p,n)124I and 124Te(p,2n)123I reactions, among the many reaction channels opened, are the major reactions under consideration from a diagnostic purpose because reaction residuals as the gamma emitters are used for most radiophamaceutical applications involving radioiodine. Based on the available experimental data, the absorption cross sections and elastic scattering angular distributions of the proton-induced nuclear reaction on Te isotopes below 60 MeV are calculated using the optical model code APMNK. The transmission coefficients of neutron, proton, deuteron, trition and alpha particles are calculated by CUNF code and are fed into the GNASH code. By adjusting level density parameters and the pair correction values of some reaction channels, as well as the composite nucleus state density constants of the pre-equilibrium model, the production cross sections and energy-angle correlated spectra of the secondary light particles, as well as production cross sections and energy distributions of heavy recoils and gamma rays are calculated by the statistical plus pre-equilibrium model code GNASH. The calculated results are analysed and compared with the experimental data taken from the EXFOR. The optimized global optical model parameters give overall agreement with the experimental data over both the entire energy range and all tellurium isotopes.

  • PDF

Deuterium Naturally Present in Solvent and Site-Specific Isotope Population of Deuterium-Enriched Solute

  • Hwang, Ryeo Yun;Han, Oc Hee;Lee, Juhee;Kim, Eun Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2959-2962
    • /
    • 2013
  • As the concentration of aqueous $CD_3OH$ solutions was decreased, the OD peaks in $^2H$ NMR spectra grew relative to the $CD_3$ peaks. Isotope impurity for OH groups of $CD_3OH$ and deuterium naturally present in water contributed to the OD peaks. Using these peak area data, the site-specific isotope populations of isotope enriched chemicals were measured. In addition, the method using both $^1H$ and $^2H$ NMR spectroscopy was demonstrated with neat $CD_3OH$ to measure the site-specific isotope populations. The results indicate that although it represents only ~0.015% of hydrogen isotopes, the deuterium naturally present in solvents cannot be ignored, especially when the concentration of deuterium-enriched solutes is varied. Proton/deuteron exchange between methyl and methyl/hydroxyl groups was confirmed to be negligible, while that among hydroxyl groups was detectable.

Recent Status of Commercial PET Cyclotron and KOTRON-13 (KOTRON-13과 상용 PET 사이클로트론의 최근 기술 동향)

  • Chai, Jong-Seo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • This paper is described on the development of KOTRON-13 and recent status of PET cyclotron by commercial cyclotron companies. KIRAMS has developed medical cyclotron which is KIRAMS-13. Samyoung Unitech produces KOTRON-13 with transfered technology by KIRAMS. As a part of Regional Cyclotron Installation Protect, KOTRON-13 cyclotrons and $[18F]FDG$ production modules are being installed at regional cyclotron centers in Korea. The medical concern with radiation technology has been growing for the last several years. Early cancer diagnosis through the cyclotron and PET-CT have been brought to public attention by commercial cyclotron models in the world. The new commercial cyclotron models are introduced compact low energy cyclotrons developed by CTI, GE, Sumitomo in recent. It produces different short-lived radioisotopes, such as $[^{18}F],\;[^{11}C],\;[^{13}N]\;and\;[^{15}O]$. For the better reliability acceleration particle is proton only. The characteristics of new model cyclotrons are changed to lower energy corresponding to less 13 MeV. New models have self-shielding and low power consumption. Design criteria for the different types of commercial cyclotrons are described with reference to hospital demands.