• Title/Summary/Keyword: Deterministic algorithms

Search Result 117, Processing Time 0.031 seconds

A Dynamic OHT Routing Algorithm in Automated Material Handling Systems (자동화 물류시스템 내 차량 혼잡도를 고려한 무인운반차량의 동적 경로 결정 알고리즘)

  • Kang, Bonggwon;Kang, Byeong Min;Hong, Soondo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.40-48
    • /
    • 2022
  • An automated material handling system (AMHS) has been emerging as an important factor in the semiconductor wafer manufacturing industry. In general, an automated guided vehicle (AGV) in the Fab's AMHS travels hundreds of miles on guided paths to transport a lot through hundreds of operations. The AMHS aims to transfer wafers while ensuring a short delivery time and high operational reliability. Many linear and analytic approaches have evaluated and improved the performance of the AMHS under a deterministic environment. However, the analytic approaches cannot consider a non-linear, non-convex, and black-box performance measurement of the AMHS owing to the AMHS's complexity and uncertainty. Unexpected vehicle congestion increases the delivery time and deteriorates the Fab's production efficiency. In this study, we propose a Q-Learning based dynamic routing algorithm considering vehicle congestion to reduce the delivery time. The proposed algorithm captures time-variant vehicle traffic and decreases vehicle congestion. Through simulation experiments, we confirm that the proposed algorithm finds an efficient path for the vehicles compared to benchmark algorithms with a reduced mean and decreased standard deviation of the delivery time in the Fab's AMHS.

Digital simulation model for soil erosion and Sediment Yield from Small Agricultural Watersheds(I) (농업 소류역으로부터의 토양침식 및 유사량 시산을 위한 전산모의 모델 (I))

  • 권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.108-114
    • /
    • 1980
  • A deterministic conceptual erosion model which simulates detachment, entrainment, transport and deposition of eroded soil particles by rainfall impact and flowing water is presented. Both upland and channel phases of sediment yield are incorporated into the erosion model. The algorithms for the soil erosion and sedimentation processes including land and crop management effects are taken from the literature and then solved using a digital computer. The erosion model is used in conjunction with the modified Kentucky Watershed Model which simulates the hydrologic characteristics from watershed data. The two models are linked together by using the appropriate computer code. Calibrations for both the watershed and erosion model parameters are made by comparing the simulated results with actual field measurements in the Four Mile Creek watershed near Traer, Iowa using 1976 and 1977 water year data. Two water years, 1970 and 1978 are used as test years for model verification. There is good agreement between the mean daily simulated and recorded streamflow and between the simulated and recorded suspended sediment load except few partial differences. The following conclusions were drawn from the results after testing the watershed and erosion model. 1. The watershed and erosion model is a deterministic lumped parameter model, and is capable of simulating the daily mean streamflow and suspended sediment load within a 20 percent error, when the correct watershed and erosion parameters are supplied. 2. It is found that soil erosion is sensitive to errors in simulation of occurrence and intensity of precipitation and of overland flow. Therefore, representative precipitation data and a watershed model which provides an accurate simulation of soil moisture and resulting overland flow are essential for the accurate simulation of soil erosion and subsequent sediment transport prediction. 3. Erroneous prediction of snowmelt in terms of time and magnitute in conjunction with The frozen ground could be the reason for the poor simulation of streamflow as well as sediment yield in the snowmelt period. More elaborate and accurate snowmelt submodels will greatly improve accuracy. 4. Poor simulation results can be attributed to deficiencies in erosion model and to errors in the observed data such as the recorded daily streamflow and the sediment concentration. 5. Crop management and tillage operations are two major factors that have a great effect on soil erosion simulation. The erosion model attempts to evaluate the impact of crop management and tillage effects on sediment production. These effects on sediment yield appear to be somewhat equivalent to the effect of overland flow. 6. Application and testing of the watershed and erosion model on watersheds in a variety of regions with different soils and meteorological characteristics may be recommended to verify its general applicability and to detact the deficiencies of the model. Futhermore, by further modification and expansion with additional data, the watershed and erosion model developed through this study can be used as a planning tool for watershed management and for solving agricultural non-point pollution problems.

  • PDF

Large Scale Protein Side-chain Packing Based on Maximum Edge-weight Clique Finding Algorithm

  • K.C., Dukka Bahadur;Brown, J.B.;Tomita, Etsuji;Suzuki, Jun'ichi;Akutsu, Tatsuya
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.228-233
    • /
    • 2005
  • The protein side-chain packing problem (SCPP) is known to be NP-complete. Various graph theoretic based side-chain packing algorithms have been proposed. However as the size of the protein becomes larger, the sampling space increases exponentially. Hence, one approach to cope with the time complexity is to decompose the graph of the protein into smaller subgraphs. Some existing approaches decompose the graph into biconnected components at an articulation point (resulting in an at-most 21-residue subgraph) or solve the SCPP by tree decomposition (4-, 5-residue subgraph). In this regard, we had also presented a deterministic based approach called as SPWCQ using the notion of maximum edge weight clique in which we reduce SCPP to a graph and then obtain the maximum edge-weight clique of the obtained graph. This algorithm performs well for a protein of less than 500 residues. However, it fails to produce a feasible solution for larger proteins because of the size of the search space. In this paper, we present a new heuristic approach for the side-chain packing problem based on the maximum edge-weight clique finding algorithm that enables us to compute the side-chain packing of much larger proteins. Our new approach can compute side-chain packing of a protein of 874 residues with an RMSD of 1.423${\AA}$.

  • PDF

Averaging TRIAD Algorithm for Attitude Determination (평균 TRIAD를 이용한 자세 결정)

  • Kim, Dong-Hoon;Lee, Henzeh;Oh, Hwa-Suk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • In general, accurate attitude information is essential to perform the mission. Two algorithms are well-known to determine the attitude through two or more vector observations. One is deterministic method such as TRIAD algorithm, the other is optimal method such as QUEST algorithm. This Paper suggests the idea to improve performance of the TRIAD algorithm and to determine the attitude by combination of different sensors. First, we change the attitude matrix to Euler angle instead of using orthogonalization method and also use covariance in place of variance, then apply an unbiased minimum variance formula for more accurate solutions. We also suggest the methodology to determine the attitude when more than two measurements are given. The performance of the Averaging TRIAD algorithm upon the combination of different sensors is analyzed by numerical simulation in terms of standard deviation and probability.

Optimization of Economic Load Dispatch Problem for Quadratic Fuel Cost Function with Prohibited Operating Zones (운전금지영역을 가진 이차 발전비용함수의 경제급전문제 최적화)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.5
    • /
    • pp.155-162
    • /
    • 2015
  • This paper proposes a deterministic optimization algorithm to solve economic load dispatch problem with quadratic convex fuel cost function. The proposed algorithm primarily partitions a generator with prohibited zones into multiple generators so as to place them afield the prohibited zone. It then sets initial values to $P_i{\leftarrow}P_i^{max}$ and reduces power generation costs of those incurring the maximum unit power cost. It finally employs a swap optimization process of $P_i{\leftarrow}P_i-{\beta}$, $P_j{\leftarrow}P_j+{\beta}$ where $_{max}\{F(P_i)-F(P_i-{\beta})\}$ > $_{min}\{F(P_j+{\beta})-F(P_j)\}$, $i{\neq}j$, ${\beta}=1.0,0.1,0.01,0.001$. When applied to 3 different 15-generator cases, the proposed algorithm has consistently yielded optimized results compared to those of heuristic algorithms.

Nonstandard Machine Learning Algorithms for Microarray Data Mining

  • Zhang, Byoung-Tak
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.165-196
    • /
    • 2001
  • DNA chip 또는 microarray는 다수의 유전자 또는 유전자 조각을 (보통 수천내지 수만 개)칩상에 고정시켜 놓고 DNA hybridization 반응을 이용하여 유전자들의 발현 양상을 분석할 수 있는 기술이다. 이러한 high-throughput기술은 예전에는 생각하지 못했던 여러가지 분자생물학의 문제에 대한 해답을 제시해 줄 수 있을 뿐 만 아니라, 분자수준에서의 질병 진단, 신약 개발, 환경 오염 문제의 해결 등 그 응용 가능성이 무한하다. 이 기술의 실용적인 적용을 위해서는 DNA chip을 제작하기 위한 하드웨어/웻웨어 기술 외에도 이러한 데이터로부터 최대한 유용하고 새로운 지식을 창출하기 위한 bioinformatics 기술이 핵심이라고 할 수 있다. 유전자 발현 패턴을 데이터마이닝하는 문제는 크게 clustering, classification, dependency analysis로 구분할 수 있으며 이러한 기술은 통계학과인공지능 기계학습에 기반을 두고 있다. 주로 사용된 기법으로는 principal component analysis, hierarchical clustering, k-means, self-organizing maps, decision trees, multilayer perceptron neural networks, association rules 등이다. 본 세미나에서는 이러한 기본적인 기계학습 기술 외에 최근에 연구되고 있는 새로운 학습 기술로서 probabilistic graphical model (PGM)을 소개하고 이를 DNA chip 데이터 분석에 응용하는 연구를 살펴본다. PGM은 인공신경망, 그래프 이론, 확률 이론이 결합되어 형성된 기계학습 모델로서 인간 두뇌의 기억과 학습 기작에 기반을 두고 있으며 다른 기계학습 모델과의 큰 차이점 중의 하나는 generative model이라는 것이다. 즉 일단 모델이 만들어지면 이것으로부터 새로운 데이터를 생성할 수 있는 능력이 있어서, 만들어진 모델을 검증하고 이로부터 새로운 사실을 추론해 낼 수 있어 biological data mining 문제에서와 같이 새로운 지식을 발견하는 exploratory analysis에 적합하다. 또한probabilistic graphical model은 기존의 신경망 모델과는 달리 deterministic한의사결정이 아니라 확률에 기반한 soft inference를 하고 학습된 모델로부터 관련된 요인들간의 인과관계(causal relationship) 또는 상호의존관계(dependency)를 분석하기에 적합한 장점이 있다. 군체적인 PGM 모델의 예로서, Bayesian network, nonnegative matrix factorization (NMF), generative topographic mapping (GTM)의 구조와 학습 및 추론알고리즘을소개하고 이를 DNA칩 데이터 분석 평가 대회인 CAMDA-2000과 CAMDA-2001에서 사용된cancer diagnosis 문제와 gene-drug dependency analysis 문제에 적용한 결과를 살펴본다.

  • PDF

ROLE OF COMPUTER SIMULATION MODELING IN PESTICIDE ENVIRONMENTAL RISK ASSESSMENT

  • Wauchope, R.Don;Linders, Jan B.H.J.
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.91-93
    • /
    • 2003
  • It has been estimated that the equivalent of approximately $US 50 billion has been spent on research on the behavior and fate of pesticides in the environment since Rachel Carson published “Silent Spring” in 1962. Much of the resulting knowledge has been summarized explicitly in computer algorithms in a variety of empirical, deterministic, and probabilistic simulation models. These models describe and predict the transport, degradation and resultant concentrations of pesticides in various compartments of the environment during and after application. In many cases the known errors of model predictions are large. For this reason they are typically designed to be “conservative”, i.e., err on the side of over-prediction of concentrations in order to err on the side of safety. These predictions are then compared with toxicity data, from tests of the pesticide on a series of standard representative biota, including terrestrial and aquatic indicator species and higher animals (e.g., wildlife and humans). The models' predictions are good enough in some cases to provide screening of those compounds which are very unlikely to do harm, and to indicate those compounds which must be investigated further. If further investigation is indicated a more detailed (and therefore more complicated) model may be employed to give a better estimate, or field experiments may be required. A model may be used to explore “what if” questions leading to possible alternative pesticide usage patterns which give lower potential environmental concentrations and allowable exposures. We are currently at a maturing stage in this research where the knowledge base of pesticide behavior in the environmental is growing more slowly than in the past. However, innovative uses are being made of the explosion in available computer technology to use models to take ever more advantage of the knowledge we have. In this presentation, current developments in the state of the art as practiced in North America and Europe will be presented. Specifically, we will look at the efforts of the ‘Focus’ consortium in the European Union, and the ‘EMWG’ consortium in North America. These groups have been innovative in developing a process and mechanisms for discussion amongst academic, agriculture, industry and regulatory scientists, for consensus adoption of research advances into risk management methodology.

  • PDF

A Stochastic Transit Assignment Model for Intercity Rail Network (지역간 철도의 확률적 통행배정모형 구측 연구)

  • Kwon, Yong-Seok;Kim, Kyoung-Tae;Lim, Chong-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.488-498
    • /
    • 2009
  • The characteristics of intercity rail network are different from those of public transit network in urban area. In this paper, we proposed a new transit assignment model which is generalized form of deterministic assignment model by introducing line selection probability on route section. This model consider various characteristics of intercity rail and simplify network expansion for appling search algorithms developed in road assignment model. We showed the model availability by comparing with existing models using virtual networks. The tests on a small scale network show that this model is superior to existing models for predicting intercity rail demand.

A Hybrid Genetic Algorithm for Vehicle Routing Problem which Considers Traffic Situations and Stochastic Demands (교통상황과 확률적 수요를 고려한 차량경로문제의 Hybrid 유전자 알고리즘)

  • Kim, Gi-Tae;Jeon, Geon-Uk
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.5
    • /
    • pp.107-116
    • /
    • 2010
  • The vehicle travel time between locations in a downtown is greatly influenced by both complex road conditions and traffic situation that changes real time according to various external variables. The customer's demands also stochastically change by time period. Most vehicle routing problems suggest a vehicle route considering travel distance, average vehicle speed, and deterministic demand; however, they do not consider the dynamic external environment, including items such as traffic conditions and stochastic demand. A realistic vehicle routing problem which considers traffic (smooth, delaying, and stagnating) and stochastic demands is suggested in this study. A mathematical programming model and hybrid genetic algorithm are suggested to minimize the total travel time. By comparing the results considering traffic and stochastic demands, the suggested algorithm gives a better solution than existing algorithms.

A Study on Development of Automatic Westing Software by Vectorizing Technique (벡터라이징을 이용한 자동부재배치 소프트웨어 개발에 관한 연구)

  • Lho T.J.;Kang D.J.;Kim M.S.;Park Jun-Yeong;Park S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.748-753
    • /
    • 2005
  • Among processes to manufacture parts from footwear materials like upper leathers, one of the most essential processes is the cutting one optimally arranging lots of parts on raw footwear materials and cutting. A new nesting strategy was proposed for the 2-dimensional part layout by using a two-stage approach, where which can be effectively used for water jet cutting. In the initial layout stage, a SOAL(Self-Organization Assisted Layout) based on the combination of FCM(Fuzzy C-Means) and SOM was adopted. In the layout improvement stage, SA(Simulated Annealing) based approach was adopted for a finer layout. The proposed approach saves much CPU time through a two-stage approach scheme, while other annealing-based algorithm so far reported fur a nesting problem are computationally expensive. The proposed nesting approach uses the stochastic process, and has a much higher possibility to obtain a global solution than the deterministic searching technique. We developed the automatic nesting software of NST(ver.1.1) software for footwear industry by implementing of these proposed algorithms. The NST software was applied by the optimized automatic arrangement algorithm to cut without the loss of leathers. if possible, after detecting damage areas. Also, NST software can consider about several features in not only natural loathers but artificial ones. Lastly, the NST software can reduce a required time to implement generation of NC code. cutting time, and waste of raw materials because the NST software automatically performs parts arrangement, cutting paths generation and finally NC code generation, which are needed much effect and time to generate them manually.

  • PDF