• Title/Summary/Keyword: Deterministic Design Optimization

Search Result 118, Processing Time 0.022 seconds

Optimum Design of the Brushless Motor Considering Parameter Tolerance (설계변수 공차를 고려한 브러시리스 모터 출력밀도 최적설계)

  • Son, Byoung-Ook;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1600-1604
    • /
    • 2010
  • This paper presents the optimum design of the brushless motor to maximize the output power per weight considering the design parameter tolerance. The optimization is proceeded by commercial software that is adopted the scatter-search algorithm and the characteristic analysis is conducted by FEM. The stochastic optimum design results are compared with those of the deterministic optimization method. We can verify that the results of the stochastic optimization is superior than that of deterministic optimization.

SIZE OPTIMIATION OF AN ENGINE ROOM MEMBER FOR CRASHWORTHINESS USING RESPONSE SURFACE METHOD

  • Oh, S.;Ye, B.W.;Sin, H.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.93-102
    • /
    • 2007
  • The frontal crash optimization of an engine room member using the response surface method was studied. The engine room member is composed of the front side member and the sub-frame. The thicknesses of the panels on the front side member and the sub-frame were selected as the design variables. The purpose of the optimization was to reduce the weight of the structure, under the constraint that the objective quantity of crash energy is absorbed. The response surface method was used to approximate the crash behavior in mathematical form for optimization procedure. To research the effect of the regression method, two different methodologies were used in constructing the response surface model, the least square method and the moving least square method. The optimum with the two methods was verified by the simulation result. The precision of the surrogate model affected the optimal design. The moving least square method showed better approximation than the least square method. In addition to the deterministic optimization, the reliability-based design optimization using the response surface method was executed to examine the effect of uncertainties in design variables. The requirement for reliability made the optimal structure be heavier than the result of the deterministic optimization. Compared with the deterministic optimum, the optimal design using the reliability-based design optimization showed higher crash energy absorption and little probability of failure in achieving the objective.

Probabilistic multi-objective optimization of a corrugated-core sandwich structure

  • Khalkhali, Abolfazl;Sarmadi, Morteza;Khakshournia, Sharif;Jafari, Nariman
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.709-726
    • /
    • 2016
  • Corrugated-core sandwich panels are prevalent for many applications in industries. The researches performed with the aim of optimization of such structures in the literature have considered a deterministic approach. However, it is believed that deterministic optimum points may lead to high-risk designs instead of optimum ones. In this paper, an effort has been made to provide a reliable and robust design of corrugated-core sandwich structures through stochastic and probabilistic multi-objective optimization approach. The optimization is performed using a coupling between genetic algorithm (GA), Monte Carlo simulation (MCS) and finite element method (FEM). To this aim, Prob. Design module in ANSYS is employed and using a coupling between optimization codes in MATLAB and ANSYS, a connection has been made between numerical results and optimization process. Results in both cases of deterministic and probabilistic multi-objective optimizations are illustrated and compared together to gain a better understanding of the best sandwich panel design by taking into account reliability and robustness. Comparison of results with a similar deterministic optimization study demonstrated better reliability and robustness of optimum point of this study.

Reliability Based Design Optimization of the Softwater Pressure Tank Considering Temperature Effect (온도영향을 고려한 연수기 압력탱크의 신뢰성 최적설계)

  • Bae Chul-Ho;Kim Mun-Seong;Suh Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1458-1466
    • /
    • 2004
  • Deterministic optimum designs that are obtained without consideration of uncertainties could lead to unrealiable designs. Such deterministic engineering optimization tends to promote the structural system with less reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. This paper proposes the reliability based design optimization technique fur apressure tank considering temperature effect. This paper presents an efficient and stable reliability based design optimization method by using the advanced first order second moment method, which evaluates a probabilistic constraint for more accuracy. In addition, the response surface method is utilized to approximate the performance functions describing the system characteristics in the reliability based design optimization procedure.

OPTIMAL RELIABILITY DESIGN FOR THIN-WALLED BEAM OF VEHICLE STRUCTURE CONSIDERING VIBRATION

  • Lee, S.B.;Baik, S.;Yim, H.J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.135-140
    • /
    • 2003
  • In the deterministic optimization of a structural system, objective function, design constraints and design variables, are treated in a nonstatistical fashion. However, such deterministic engineering optimization tends to promote the structural system with lest reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. Therefore, a balance must be developed between the satisfactions of the design requirements and the objectives of reducing manufacturing cost. This paper proposes the reliability-based design optimization (RBDO) technique, which enables the optimum design that considers confidence level for the vibration characteristics of structural system. Response surface method (RSM) is utilized to approximate the performance functions describing the system characteristics in the RBDO procedure. The proposed optimization technique is applied to the pillar section design considering natural frequencies of a vehicle structure.

Reliability-Based Design Optimization of Slider Air Bearings

  • Yoon, Sang-Joon;Choi, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1722-1729
    • /
    • 2004
  • This paper presents a design methodology for determining configurations of slider air bearings considering the randomness of the air-bearing surface (ABS) geometry by using the iSIGHT. A reliability-based design optimization (RBDO) problem is formulated to minimize the variations in the mean values of the flying heights from a target value while satisfying the desired probabilistic constraints keeping the pitch and roll angles within a suitable range. The reliability analysis is employed to estimate how the fabrication tolerances of individual slider parameters affect the final flying attitude tolerances. The proposed approach first solves the deterministic optimization problem. Then, beginning with this solution, the RBDO is continued with the reliability constraints affected by the random variables. Reliability constraints overriding the constraints of the deterministic optimization attempt to drive the design to a reliability solution with minimum increase in the objective. The simulation results of the RBDO are listed in comparison with the values of the initial design and the results of the deterministic optimization, respectively. To show the effectiveness of the proposed approach, the reliability analyses are simply carried out by using the mean value first-order second-moment (MVFO) method. The Monte Carlo simulation of the RBDO's results is also performed to estimate the efficiency of the proposed approach. Those results are demonstrated to satisfy all the desired probabilistic constraints, where the target reliability level for constraints is defined as 0.8.

RELIABILITY-BASED DESIGN OPTIMIZATION OF AN AUTOMOTIVE SUSPENSION SYSTEM FOR ENHANCING KINEMATIC AND COMPLIANCE CHARACTERISTICS

  • CHOI B.-L.;CHOI J.-H.;CHOI D.-H.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.235-242
    • /
    • 2005
  • This study introduces the Reliability-Based Design Optimization (RBDO) to enhance the kinematic and compliance (K & C) characteristics of automotive suspension system. In previous studies, the deterministic optimization has been performed to enhance the K & C characteristics. Unfortunately, uncertainties in the real world have not been considered in the deterministic optimization. In the design of suspension system, design variables with the uncertainties, such as the bushing stiffness, have a great influence on the variation of the suspension performances. There is a need to quantify these uncertainties and to apply the RBDO to obtain the design, satisfying the target reliability level. In this research, design variables including uncertainties are dealt as random variables and reliability of the suspension performances, which are related the K & C characteristics, are quantified and the RBDO is performed. The RBD-optimum is compared with the deterministic optimum to verify the enhancement in reliability. Thus, the reliability of the suspension performances is estimated and the RBD-optimum, satisfying the target reliability level, is determined.

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 1

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.297-316
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 2

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.317-334
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

A multilevel framework for decomposition-based reliability shape and size optimization

  • Tamijani, Ali Y.;Mulani, Sameer B.;Kapania, Rakesh K.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.467-486
    • /
    • 2017
  • A method for decoupling reliability based design optimization problem into a set of deterministic optimization and performing a reliability analysis is described. The inner reliability analysis and the outer optimization are performed separately in a sequential manner. Since the outer optimizer must perform a large number of iterations to find the optimized shape and size of structure, the computational cost is very high. Therefore, during the course of this research, new multilevel reliability optimization methods are developed that divide the design domain into two sub-spaces to be employed in an iterative procedure: one of the shape design variables, and the other of the size design variables. In each iteration, the probability constraints are converted into equivalent deterministic constraints using reliability analysis and then implemented in the deterministic optimization problem. The framework is first tested on a short column with cross-sectional properties as design variables, the applied loads and the yield stress as random variables. In addition, two cases of curvilinearly stiffened panels subjected to uniform shear and compression in-plane loads, and two cases of curvilinearly stiffened panels subjected to shear and compression loads that vary in linear and quadratic manner are presented.