• 제목/요약/키워드: Deterministic Analysis

검색결과 695건 처리시간 0.026초

충북 문화산업 수요의 실증적 분석 (Empirical Analysis on Cultural Industry Demand in Chung-Buk Province)

  • 정초시;신길수
    • 한국콘텐츠학회논문지
    • /
    • 제7권10호
    • /
    • pp.165-174
    • /
    • 2007
  • 경제가 성장함에 따라 문화산업에 대한 수요는 빠르게 증가할 것으로 예상된다. 그러나 문화상품이 공공재적 특성을 가지고 있어 정부가 공급한다는 점에서, 얼마나 수요자의 욕구를 충족시킬지가 의문이다. 따라서 본 논문은 충북에서의 문화수요의 결정요인 분석을 통하여 향후 지방정부가 문화산업을 공급하는데 있어서 준거를 제시하고자 함을 목적으로 한다. 이를 위하여 수요자의 문화산업의 포괄적 만족도 결정요인, 문화산업 유형의 결정요인에서 참여형과 관람형 문화산업 중 어떤 유형을 결정할 것인가, 여가수요에서 재화집약적 여가수요 및 시간집약적 여가수요의 결정요인을 계량경제학적 방법을 이용하여 분석하였다. 그리고 분석결과를 활용하여 향후 지방정부가 최적의 문화상품을 공급하기 위하여 수요자의 필요를 최대한 반영할 수 있는 기준을 제시하였다.

Conceptual design of a high neutron flux research reactor core with low enriched uranium fuel and low plutonium production

  • Rahimi, Ghasem;Nematollahi, MohammadReza;Hadad, Kamal;Rabiee, Ataollah
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.499-507
    • /
    • 2020
  • Research reactors for radioisotope production, fuel and material testing and research activities are designed, constructed and operated based on the society's needs. In this study, neutronic and thermal hydraulic design of a high neutron flux research reactor core for radioisotope production is presented. Main parameters including core excess reactivity, reactivity variations, power and flux distribution during the cycle, axial and radial power peaking factors (PPF), Pu239 production and minimum DNBR are calculated by nuclear deterministic codes. Core calculations performed by deterministic codes are validated with Monte Carlo code. Comparison of the neutronic parameters obtained from deterministic and Monte Carlo codes indicates good agreement. Finally, subchannel analysis performed for the hot channel to evaluate the maximum fuel and clad temperatures. The results show that the average thermal neutron flux at the beginning of cycle (BOC) is 1.0811 × 1014 n/㎠-s and at the end of cycle (EOC) is 1.229 × 1014 n/㎠-s. Total Plutonium (Pu239) production at the EOC evaluated to be 0.9487 Kg with 83.64% grade when LEU (UO2 with 3.7% enrichment) used as fuel. This designed reactor which uses LEU fuel and has high neutron flux and low plutonium production could be used for peaceful nuclear activities based on nuclear non-proliferation treaty concepts.

저가 관성센서의 오차보상을 위한 간접형 칼만필터 기반 센서융합과 소형 비행로봇의 자세 및 위치결정 (Indirect Kalman Filter based Sensor Fusion for Error Compensation of Low-Cost Inertial Sensors and Its Application to Attitude and Position Determination of Small Flying robot)

  • 박문수;홍석교
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.637-648
    • /
    • 2007
  • This paper presents a sensor fusion method based on indirect Kalman filter(IKF) for error compensation of low-cost inertial sensors and its application to the determination of attitude and position of small flying robots. First, the analysis of the measurement error characteristics to zero input is performed, focusing on the bias due to the temperature variation, to derive a simple nonlinear bias model of low-cost inertial sensors. Moreover, from the experimental results that the coefficients of this bias model possess non-deterministic (stochastic) uncertainties, the bias of low-cost inertial sensors is characterized as consisting of both deterministic and stochastic bias terms. Then, IKF is derived to improve long term stability dominated by the stochastic bias error, fusing low-cost inertial sensor measurements compensated by the deterministic bias model with non-inertial sensor measurement. In addition, in case of using intermittent non-inertial sensor measurements due to the unreliable data link, the upper and lower bounds of the state estimation error covariance matrix of discrete-time IKF are analyzed by solving stochastic algebraic Riccati equation and it is shown that they are dependant on the throughput of the data link and sampling period. To evaluate the performance of proposed method, experimental results of IKF for the attitude determination of a small flying robot are presented in comparison with that of extended Kaman filter which compensates only deterministic bias error model.

Three-dimensional Kinematic Analysis of the Yurchenko Layout with 360-degree Twist in Female Vaults: Deterministic Model and Judges' Scores

  • Park, Cheol-Hee;Kim, Young-Kwan
    • 한국운동역학회지
    • /
    • 제27권1호
    • /
    • pp.9-18
    • /
    • 2017
  • Objective: The purpose of this study was to identify kinematic variables that govern successful performance and judges' scores and to establish correlative relationships among those of Yurchenko layout with a full twist in female vaults. Method: Four video cameras with sampling rate of 60 Hz collected 32 motion data of Yurchenko vaults from twenty-two female participants (age: $18.6{\pm}3.6years$, height: $153.0{\pm}6.5cm$, mass: $44.7{\pm}7.3kg$) during national competition. Posting processing and calculations of kinematic variables were performed in Kwon 3D XP and $Matlab^{(R)}$ programs. Correlation and regression analyses were applied to find the relationships between the obtained scores and kinematic variables. Deterministic model (Hay & Reid, 1988) was used to investigate the strength of correlative relationships among kinematic variables. Results: The obtained scores from the judges' decision were mainly affected by post-flight peak height, horse contact time, knee angle at landing, and horse takeoff angle. Strong blocking during horse contact was required to get successful performance and obtain high scores. Modified deterministic model showed that round-off entrance and takeoff angles and resultant velocity of the center of mass (CM) during the roundoff phase were the starting variables affecting performance in the following kinematics. Knee angle at landing, a highly influential variable on the obtained point, was only determined by judges' decision without significant correlative relationship with previous kinematic variables. Conclusion: The obtained scores highly depended on kinematic variables of post-flight and horse contact phases that were affected by those from the previous phases including round-off postures and resultant velocity of the body center of mass.

이봉분포 마스터커브를 이용한 SA508 Gr. 3 원자로용기강의 파괴인성 평가 (Evaluation of Fracture Toughness for SA508 Gr. 3 Reactor Pressure Vessel Steel Using Bimodal Master Curve Approach)

  • 김종민;김민철;이봉상
    • 한국압력기기공학회 논문집
    • /
    • 제13권2호
    • /
    • pp.60-66
    • /
    • 2017
  • The standard master curve (MC) approach has the major limitation because it is only applicable to homogeneous datasets. In nature, materials are macroscopically inhomogeneous and involve scatter of fracture toughness data due to various deterministic material inhomogeneity and random inhomogeneity. RPV(reactor pressure vessel) steel has different fracture toughness with varying distance from the inner surface of the wall due to cooling rate in manufacturing process; deterministic inhomogeneity. On the other hand, reference temperature, $T_0$, used in the evaluation of fracture toughness is acting as a random parameter in the evaluation of welding region; random inhomogeneity. In the present paper, four regions, the surface, 1/8T, 1/4T and 1/2T, were considered for fracture toughness specimens of KSNP (Korean Standard Nuclear Plant) SA508 Gr. 3 steel to investigate deterministic material inhomogeneity and random inhomogeneity. Fracture toughness tests were carried out for four regions and three test temperatures in the transition region. Fracture toughness evaluation was performed using the bimodal master curve (BMC) approach which is applicable to the inhomogeneous material. The results of the bimodal master curve analyses were compared with that of conventional master curve analyses. As a result, the bimodal master approach considering inhomogeneous materials provides better description of scatter in fracture toughness data than conventional master curve analysis. However, the difference in the $T_0$ determined by two master curve approaches was insignificant.

Comparison of Benefit Estimation Models in Cost-Benefit Analysis: A Case of Chronic Hypertension Management Programs

  • Lim, Ji-Young;Kim, Mi-Ja;Park, Chang-Gi;Kim, Jung-Yun
    • 대한간호학회지
    • /
    • 제41권6호
    • /
    • pp.750-757
    • /
    • 2011
  • Purpose: Cost-benefit analysis is one of the most commonly used economic evaluation methods, which helps to inform the economic value of a program to decision makers. However, the selection of a correct benefit estimation method remains critical for accurate cost-benefit analysis. This paper compared benefit estimations among three different benefit estimation models. Methods: Data from community-based chronic hypertension management programs in a city in South Korea were used. Three different benefit estimation methods were compared. The first was a standard deterministic estimation model; second, a repeated-measures deterministic estimation model; and third, a transitional probability estimation model. Results: The estimated net benefit of the three different methods were $1,273.01, $-3,749.42, and $-5,122.55 respectively. Conclusion: The transitional probability estimation model showed the most correct and realistic benefit estimation, as it traced possible paths of changing status between time points and it accounted for both positive and negative benefits.

A Combined Bulk Electric System Reliability Framework Using Adequacy and Static Security Indices

  • Billinton, Roy;Wangdee, Wijarn
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권4호
    • /
    • pp.414-422
    • /
    • 2006
  • Deterministic techniques have been applied in power system planning for many years and there is a growing interest in combining these techniques with probabilistic considerations to assess the increased system stress due to the restructured electricity environment. The overall reliability framework proposed in this paper incorporates the deterministic N-1 criterion in a probabilistic framework, and results in the joint inclusion of both adequacy and security considerations in system planning. The combined framework is achieved using system well-being analysis and traditional adequacy assessment. System well-being analysis is used to quantify the degree of N-1 security and N-1 insecurity in terms of probabilities and frequencies. Traditional adequacy assessment is Incorporated to quantify the magnitude of the severity and consequences associated with system failure. The concepts are illustrated by application to two test systems. The results based on the overall reliability analysis framework indicate that adequacy indices are adversely affected by a generation deficient environment and security indices are adversely affected by a transmission deficient environment. The combined adequacy and security framework presented in this paper can assist system planners to realize the overall benefits associated with system modifications based on the degree of adequacy and security, and therefore facilitate the decision making process.

국방 R&D프로젝트의 일정-비용분석모델의 연구 (A study on a schedule-cost analysis model for defense R&D project planning)

  • 황홍석;류정철;정덕길
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.213-216
    • /
    • 1996
  • R'||'&'||'D project management is a process of decisions concerned with the achievement of goals of objectives. Especially, defense R'||'&'||'D project planning is the key in the successfull management of defense development. The defense project managers are constantly having to perform "what if\ulcorner" exercise, such as what if the project is extended out for an additional cost\ulcorner In this reserch, we developed a schedule-cost analysis model based upon Critical Path Method(CPM) and Venture Evaluation and Review Technique(VERT) for schedule-cost trade off analysis defense R'||'&'||'D projects. In the first step, a deterministic model is developed as a heuristic which deterministic model is developed as a heuristic which determines the schedule extension and reduction cost as a function desired schedule. In the second step, a stochastic network simulation model is developed to analyse the project risk (sucess and failure). The expected time and cost can be determined for desired schedule under the assumptions of stochastic arc data (time and cost) with a various precedence relationships. This model provides the defense R'||'&'||'D managers with an estimated and expected cost for curtailing or extending a project a given amount of time. The effectiveness and efficiency of the proposed methods, a heuristic and stochastic networks simulations, have been demonstrated through examples.

  • PDF

Robustness analysis of vibration control in structures with uncertain parameters using interval method

  • Chen, Su Huan;Song, Min;Chen, Yu Dong
    • Structural Engineering and Mechanics
    • /
    • 제21권2호
    • /
    • pp.185-204
    • /
    • 2005
  • Variations in system parameters due to uncertainties may result in system performance deterioration. Uncertainties in modeling of structures are often considered to ensure that control system is robust with respect to response errors. Hence, the uncertain concept plays an important role in vibration control of the engineering structures. The paper discusses the robustness of the stability of vibration control systems with uncertain parameters. The vibration control problem of an uncertain system is approximated by a deterministic one. The uncertain parameters are described by interval variables. The uncertain state matrix is constructed directly using system physical parameters and avoided to use bounds in Euclidean norm. The feedback gain matrix is determined based on the deterministic systems, and then it is applied to the actual uncertain systems. A method to calculate the upper and lower bounds of eigenvalues of the close-loop system with uncertain parameters is presented. The lower bounds of eigenvalues can be used to estimate the robustness of the stability the controlled system with uncertain parameters. Two numerical examples are given to illustrate the applications of the present approach.

지하굴착지반에서의 3차원 지하수흐름에 관한 신뢰성해석 (Reliability approach to three-dimensional groundwater flow analysis in underground excavation)

  • 장연수;김홍석;박준모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.988-997
    • /
    • 2006
  • In this paper, a reliability-groundwater flow program is developed by coupling the 3-D finite element numerical groundwater flow program with first and second order reliability program. The numerical groundwater program developed called DGU-FLOW is verified by solving the examples of groundwater flow through the underground excavation and comparing the results with those of commercial MODFLOW 3D programs. Reliability routine of the program is also verified by comparing the probability of failure of the flow model from FORM/SORM with that of Monte-Carlo Simulation. The difference of out-flux and total head calculated near the bottom of the excavation using the deterministic 3D groundwater flow and the commercial programs was negligible. The reliability analysis of the groundwater flow showed that the probability of failure from the first and second order reliability method are quite close that of Monte-Carlo Simulation. Therefore, the developed program is considered effective for analyzing the groundwater flow with uncertainty in hydraulic conductivity of the soils.

  • PDF