• Title/Summary/Keyword: Deterioration factors

Search Result 650, Processing Time 0.028 seconds

Analysis of Development Trends on Bio-based Environmental Transformers Oils in Power Sector (전력분야의 바이오 기반 친환경 전기 절연유 적용에 관한 개발 동향 분석)

  • Kim, Jae-Kon;Min, YoungJe;Kim, Mock-Yeon;Kwark, ByeongSub;Park, Hyunjoo
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.41-52
    • /
    • 2022
  • Mineral electrical insulating oil, which is widely used in transformers, exhibits excellent cooling performance and transformer efficiency. However, given that it is composed of petroleum-based components, it is weak in terms of biodegradability. This causes environmental problems in case of leakage and a low flash point, which is a factor that would cause great damage in the event of a fire in a substation. In this context, the use of eco-friendly electric insulating oil composed of bio-based vegetable oil and synthetic ester, which has excellent biodegradability and flame retardancy performance, has recently been expanded to the field of electric power, and various research and development (R&D) studies are in progress. According to different research results, vegetable oil and synthetic ester manufacturing technology, thermal stability, oxidation stability, property change, and quality control, which are characteristics of eco-friendly electrical insulating oils, are major factors affecting the maintenance of insulating oil properties. In addition, power companies have established and operated quality control standards according to the use of eco-friendly electrical insulating oil as they expand the exploitatoin of renewable energy in electricity production. In particular, deterioration and oxidation characteristics were jointly identified in R&D as an important influencing factor according to the content of saturated and unsaturated fatty acids present in vegetable oils and synthetic esters in power transformer applications.

A Study on the Near Construction Range Considering the Factors Affecting the Stability of Water Tunnel (수로터널 안정성에 미치는 요소를 고려한 근접시공범위에 대한 연구)

  • Mingyu Lee;Donghyuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.5
    • /
    • pp.5-12
    • /
    • 2023
  • Recently, due to urban development and expansion, construction plans have been increasing adjacent to existing tunnel structures such as subways, roads, and large pipelines. Structural plans adjacent to existing tunnels have different effects on tunnel stability depending on the construction method, degree of proximity, and location of new structures. In particular, the pressure water tunnel shows a very large difference from other road tunnels and railway tunnels in geotechnical characteristics and operation characteristics. Therefore, it is necessary to review the safety zone due to adjacent construction in consideration of the geotechnical characteristics of the water tunnel and the new sturure construction method. In this study, the existing tunnel safety zone standards were investigated. A stability evaluation performed numerical analysis considering the deterioration of concrete lining in operation and the characteristics of water tunnel. In addition, the impact of vibration caused by pile construction and blasting excavation of new structures was reviewed. Based on this, a pressure water tunnel safety zone was proposed in consideration of adjacent construction.

A positive feedback loop of heparanase/syndecan1/nerve growth factor regulates cancer pain progression

  • Xiaohu Su;Bingwu Wang;Zhaoyun Zhou;Zixian Li;Song Tong;Simin Chen;Nan Zhang;Su Liu;Maoyin Zhang
    • The Korean Journal of Pain
    • /
    • v.36 no.1
    • /
    • pp.60-71
    • /
    • 2023
  • Background: The purpose of this research was to assess the role of heparanase (HPSE)/syndecan1 (SDC1)/nerve growth factor (NGF) on cancer pain from melanoma. Methods: The influence of HPSE on the biological function of melanoma cells and cancer pain in a mouse model was evaluated. Immunohistochemical staining was used to analyze HPSE and SDC1. HPSE, NGF, and SDC1 were detected using western blot. Inflammatory factors were detected using ELISA assay. Results: HPSE promoted melanoma cell viability, proliferation, migration, invasion, and tumor growth, as well as cancer pain, while SST0001 treatment reversed the promoting effect of HPSE. HPSE up-regulated NGF, and NGF feedback promoted HPSE. High expression of NGF reversed the inhibitory effect of HPSE down-regulation on melanoma cell phenotype deterioration, including cell viability, proliferation, migration, and invasion. SST0001 down-regulated SDC1 expression. SDC1 reversed the inhibitory effect of SST0001 on cancer pain. Conclusions: The results showed that HPSE promoted melanoma development and cancer pain by interacting with NGF/SDC1. It provides new insights to better understand the role of HPSE in melanoma and also provides a new direction for cancer pain treatment.

Towards attaining efficient management of berth maintenance in Saudi Arabian Industrial Ports

  • Mohammed E. Shaawat;Abdullah Binomar;Abdulaziz S. Almohassen;Khalid Saqer. Alotaibi;Mahmoud Sodangi;Ahmad Aftab
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.1
    • /
    • pp.25-42
    • /
    • 2023
  • Despite the significance of ports as critical economic infrastructure, the berth facilities usually deteriorate due to heavy loading, unloading, aging, environmental weather conditions, marine growths, and lack of efficient maintenance management. Marine berths require proactive maintenance management to limit deterioration and defects as no berth facility is maintenance-free. Thus, delay in carrying out maintenance work for the marine berths can be devastating to the operational process involving ship entry, loading, and unloading operations. The aim of this research is to coordinate both operations work, and maintenance works that take place inside the berth of a local industrial port in Saudi Arabia, by developing a novel framework that integrates both works without affecting the efficiency and functionality of the berth. The study focused on defining the operational process of the port and identifying the elements with direct and indirect effects. In addition to determining the priority for the entry of ships inside the berth, it also identified the factors involved in designing a framework that included maintenance work as a component of the monthly berth occupancy schedule. By applying a mathematical model, a framework was established, which includes all the important elements of the process. As a result of the mathematical method formulation process, a database was designed that organizes and coordinates the operations of all berths within the port. This creates time to carry out the required maintenance work monthly as well as ease of coordination with the contractors responsible for the implementation of those works.

Current Status and Analysis of Durability for Buildings Long Neglected after Construction Discontinuation in Jeju (제주지역 공사중단 건축물의 현황조사 및 내구성 분석)

  • Han, In-Deok;Kim, Doo-Seong;Jang, Myunghoun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.441-452
    • /
    • 2023
  • Buildings that have been long neglected can suffer severe durability reduction due to factors such as rebar rust and concrete quality deterioration resulting from exposure to outside air. Furthermore, the issues associated with these suspended buildings, including safety accidents, social crimes, and environmental pollution, are becoming increasingly serious. This study investigates the current status of these buildings in the Jeju area, identifies the problems, and examines the durability of the structure in a specific location to assess the possibility of future use. Aesthetic surveys(visual and slope inspections) as well as non-destructive tests(compressive strength tests, neutralization tests, and rebar detection tests) were conducted to assess durability. The analysis revealed that the structure maintained satisfactory durability and the building's condition was good in comparison to the years of neglect.

Practical applicable model for estimating the carbonation depth in fly-ash based concrete structures by utilizing adaptive neuro-fuzzy inference system

  • Aman Kumar;Harish Chandra Arora;Nishant Raj Kapoor;Denise-Penelope N. Kontoni;Krishna Kumar;Hashem Jahangir;Bharat Bhushan
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.119-138
    • /
    • 2023
  • Concrete carbonation is a prevalent phenomenon that leads to steel reinforcement corrosion in reinforced concrete (RC) structures, thereby decreasing their service life as well as durability. The process of carbonation results in a lower pH level of concrete, resulting in an acidic environment with a pH value below 12. This acidic environment initiates and accelerates the corrosion of steel reinforcement in concrete, rendering it more susceptible to damage and ultimately weakening the overall structural integrity of the RC system. Lower pH values might cause damage to the protective coating of steel, also known as the passive film, thus speeding up the process of corrosion. It is essential to estimate the carbonation factor to reduce the deterioration in concrete structures. A lot of work has gone into developing a carbonation model that is precise and efficient that takes both internal and external factors into account. This study presents an ML-based adaptive-neuro fuzzy inference system (ANFIS) approach to predict the carbonation depth of fly ash (FA)-based concrete structures. Cement content, FA, water-cement ratio, relative humidity, duration, and CO2 level have been used as input parameters to develop the ANFIS model. Six performance indices have been used for finding the accuracy of the developed model and two analytical models. The outcome of the ANFIS model has also been compared with the other models used in this study. The prediction results show that the ANFIS model outperforms analytical models with R-value, MAE, RMSE, and Nash-Sutcliffe efficiency index values of 0.9951, 0.7255 mm, 1.2346 mm, and 0.9957, respectively. Surface plots and sensitivity analysis have also been performed to identify the repercussion of individual features on the carbonation depth of FA-based concrete structures. The developed ANFIS-based model is simple, easy to use, and cost-effective with good accuracy as compared to existing models.

Variation of time-dependent convection beat transfer coefficients in beat transfer analysis at various initial beating rates of tunnel fire scenarios (요소제거모델을 활용한 열전달해석에서 터널 화재이력곡선의 초기가열구배에 따른 대류열전달계수의 변화)

  • Choi, Soon-Wook;Chang, Soo-Ho;Lee, Jun-Hwan;Ahn, Sung-Yol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.223-237
    • /
    • 2010
  • The initial heating rate is well known as one of the most influencing factors on the occurrence of spalling and the loss of strength in concrete after fire initiation. In this study, a series of fire tests were carried out at different initial heating rates to find out its effects on the deterioration of tunnel structural members. Heat transfer analyses combined with an element elimination model were also carried out to verify its applicability in the same conditions as the fire tests. Moreover, the convection heat transfer coefficients compatible with fire test results were derived from parametric studies. In this course, their time-dependent variations were also analyzed at different initial heating rates. Finally, a numerical formula to estimate the heat transfer coefficients at the various initial heating rates was proposed by the interpolation of the results of numerical analyses.

Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil

  • Zhi Zhang;Jingguo Du;Tayebeh Mahmoudi
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.355-366
    • /
    • 2023
  • Biological corrosion, a crucial aspect of metal degradation, has received limited attention despite its significance. It involves the deterioration of metals due to corrosion processes influenced by living organisms, including bacteria. Soil represents a substantial threat to pipeline corrosion as it contains chemical and microbial factors that cause severe damage to water, oil, and gas transmission projects. To combat fouling and corrosion, corrosion inhibitors are commonly used; however, their production often involves expensive and hazardous chemicals. Consequently, researchers are exploring natural and eco-friendly alternatives, specifically nano-sized products, as potent corrosion inhibitors. This study aims to environmentally synthesize silver nanoparticles using an extract from Lagoecia cuminoides L and evaluate their effectiveness in preventing biological corrosion of buried pipes in soil. The optimal experimental conditions were determined as follows: a volume of 4 ml for the extract, a volume of 4 ml for silver nitrate (AgNO3), pH 9, a duration of 60 minutes, and a temperature of 60 degrees Celsius. Analysis using transmission electron microscopy confirmed the formation of nanoparticles with an average size of approximately 28 nm, while X-ray diffraction patterns exhibited suitable peak intensities. By employing the Scherer equation, the average particle size was estimated to be around 30 nm. Furthermore, antibacterial studies revealed the potent antibacterial activity of the synthesized silver nanoparticles against both aerobic and anaerobic bacteria. This property effectively mitigates the biological corrosion caused by bacteria in steel pipes buried in soil.

Differences in Self-Esteem, Body Composition and Lower Extremity Muscle Strength based on The Type of Physical Labor in Middle-Aged Women in Their 50s

  • Jong-Dae Park;Ki-Hong Kim;Hwan-Jong Jeong;Lee, Sang Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.294-303
    • /
    • 2023
  • This study was to find out the differences in self-esteem, body composition, and muscle strength of middle-aged women, and nine physical labor groups were selected as beautification workers at D University in Cheonan, and a total of 17 were selected as non-physical labor groups were 8 full-time housewives living in Cheonan. After selecting the subjects, the subjects arrived 30 minutes before the start of the experiment and completed the self-esteem questionnaire. After taking the stability, the measurement was carried out in the order of body composition, grip strength, and isokinetic muscle function, and the independent sample t-test was conducted. First, middle-aged women's self-esteem according to the type of physical labor was high in the physical labor group in relation to others among the sub-factors. Second, there was no significant difference in body composition according to the physical labor patterns of middle-aged women. Third, there was no significant difference in lower limb isokinetic muscular strength according to the types of physical labor of middle-aged women. Third, there was no significant difference in lower limb isokinetic muscular strength according to the types of physical labor of middle-aged women. The self-esteem according to physical labor is caused by the sense of belonging in the workplace, and the difference between body composition and muscular strength is insignificant. Therefore, it is necessary to introduce a physical activity program to promote self-esteem due to aging and prevent physical deterioration regardless of occupation.

Intelligent Bridge Safety Prediction Edge System (지능형 교량 안전성 예측 엣지 시스템)

  • Jinhyo Park;Taejin Lee;Yong-Geun Hong;Joosang Youn
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.12
    • /
    • pp.357-362
    • /
    • 2023
  • Bridges are important transportation infrastructure, but they are subject to damage and cracking due to various environmental factors and constant traffic loads, which accelerate their aging. With many bridges now older than their original construction, there is a need for systems to ensure safety and diagnose deterioration. Bridges are already utilizing structural health monitoring (SHM) technology to monitor the condition of bridges in real time or periodically. Along with this technology, the development of intelligent bridge monitoring technology utilizing artificial intelligence and Internet of Things technology is underway. In this paper, we study an edge system technique for predicting bridge safety using fast Fourier transform and dimensionality reduction algorithm for maintenance of aging bridges. In particular, unlike previous studies, we investigate whether it is possible to form a dataset using sensor data collected from actual bridges and check the safety of bridges.