• Title/Summary/Keyword: Deterioration factors

Search Result 650, Processing Time 0.036 seconds

Impact Toughness and Softening of the Heat Affected Zone of High Heat Input Welded 390 MPa Yield Strength Grade TMCP Steel (항복강도 390 MPa급 가공열처리강 대입열용접 열영향부 충격인성 및 연화현상)

  • Bang, Kook-Soo;Ahn, Young-Ho;Jeong, Hong-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.796-804
    • /
    • 2018
  • The Charpy impact toughness of the heat affected zone (HAZ) of electro gas welded 390 MPa yield strength grade steel, manufactured by a thermo mechanically controlled process, was investigated. The effects of added Nb on the toughness of the steel and the factors influencing scatter in toughness are discussed in the present work. It was observed that adding Nb to the steel led to the deterioration of HAZ toughness. The presence of soluble Nb in the HAZ increased its hardenability and resulted in a larger amount of low toughness bainitic microstructure. Microstructural observations in the notch root area revealed the significant role of different microstructures in the area. In the presence of a larger amount of bainitic microstructures, the HAZ exhibited a lower Charpy toughness with a larger scatter in toughness. A softened zone with a lower hardness than the base metal was formed in the HAZ. However, theoretical analysis revealed that the presence of the zone might not be a problem in a real welded joint because of the plastic restraint effect enforced by surrounding materials.

The Role of Labour Inspectorates in Tackling the Psychosocial Risks at Work in Europe: Problems and Perspectives

  • Toukas, Dimitrios;Delichas, Miltiadis;Toufekoula, Chryssoula;Spyrouli, Anastasia
    • Safety and Health at Work
    • /
    • v.6 no.4
    • /
    • pp.263-267
    • /
    • 2015
  • Significant changes in the past year have taken place in the world of work that are bringing new challenges with regard to employee safety and health. These changes have led to emerging psychosocial risks (PSRs) at work. The risks are primarily linked to how work is designed, organized, and managed, and to the economic and social frame of work. These factors have increased the level of work-related stress and can lead to serious deterioration in mental and physical health. In tackling PSRs, the European labor inspectorates can have an important role by enforcing preventive and/or corrective interventions in the content and context of work. However, to improve working conditions, unilateral interventions in the context and content of work are insufficient and require adopting a common strategy to tackle PSRs, based on a holistic approach. The implementation of a common strategy by the European Labor Inspectorate for tackling PSRs is restricted by the lack of a common legislative frame with regard to PSR evaluation and management, the different levels of labor inspectors' training, and the different levels of employees' and employers' health and safety culture.

Assessment of cardiac function in syncopal children without organic causes

  • Kim, Heoungjin;Eun, Lucy Youngmin
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.11
    • /
    • pp.582-587
    • /
    • 2021
  • Background: Syncope is a common problem in children and adolescents. However, a large proportion of syncope cases have no underlying cause. Purpose: This study aimed to identify the factors affecting the severity of syncope using tissue Doppler imaging (TDI). Methods: This retrospective study included 61 children and adolescents with syncope who underwent echocardiography. The head-up-tilt test (HUT) was performed when there was a more severe syncopal event. We compared the echocardiographic findings between the execute HUT and nonexecute HUT, negative HUT result and positive HUT result, and normal electrocardiogram (ECG) and abnormal ECG groups. Data were analyzed using an unpaired t test post hoc analysis. Results: In the execute and nonexecute HUT groups, the odds ratios were 0.55 for medial E/E' (P=0.040) and 0.64 for lateral E/E' (P=0.049). Comparison of the results of the decreased, normal, and increased groups for lateral E/E' revealed a significant difference in the execution HUT and nonexecute HUT groups (overall, P=0.004; decreased vs. increased, P=0.003; normal vs. increased, P=0.050). Conclusion: Medial E/E' and lateral E/E' were decreased in patients with severe syncopal events. These findings suggest that the presence of left ventricular diastolic deterioration may cause hypoperfusion even in the absence of organic causes and, consequently, increase syncope severity and frequency. The TDI measured by echocardiography can be used as an index to predict syncope recurrence and/or severity.

Predicting the Number of People for Meals of an Institutional Foodservice by Applying Machine Learning Methods: S City Hall Case (기계학습방법을 활용한 대형 집단급식소의 식수 예측: S시청 구내직원식당의 실데이터를 기반으로)

  • Jeon, Jongshik;Park, Eunju;Kwon, Ohbyung
    • Journal of the Korean Dietetic Association
    • /
    • v.25 no.1
    • /
    • pp.44-58
    • /
    • 2019
  • Predicting the number of meals in a foodservice organization is an important decision-making process that is essential for successful food production, such as reducing the amount of residue, preventing menu quality deterioration, and preventing rising costs. Compared to other demand forecasts, the menu of dietary personnel includes diverse menus, and various dietary supplements include a range of side dishes. In addition to the menus, diverse subjects for prediction are very difficult problems. Therefore, the purpose of this study was to establish a method for predicting the number of meals including predictive modeling and considering various factors in addition to menus which are actually used in the field. For this purpose, 63 variables in eight categories such as the daily available number of people for the meals, the number of people in the time series, daily menu details, weekdays or seasons, days before or after holidays, weather and temperature, holidays or year-end, and events were identified as decision variables. An ensemble model using six prediction models was then constructed to predict the number of meals. As a result, the prediction error rate was reduced from 10%~11% to approximately 6~7%, which was expected to reduce the residual amount by approximately 40%.

Runway visual range prediction using Convolutional Neural Network with Weather information

  • Ku, SungKwan;Kim, Seungsu;Hong, Seokmin
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.190-194
    • /
    • 2018
  • The runway visual range is one of the important factors that decide the possibility of taking offs and landings of the airplane at local airports. The runway visual range is affected by weather conditions like fog, wind, etc. The pilots and aviation related workers check a local weather forecast such as runway visual range for safe flight. However there are several local airfields at which no other forecasting functions are provided due to realistic problems like the deterioration, breakdown, expensive purchasing cost of the measurement equipment. To this end, this study proposes a prediction model of runway visual range for a local airport by applying convolutional neural network that has been most commonly used for image/video recognition, image classification, natural language processing and so on to the prediction of runway visual range. For constituting the prediction model, we use the previous time series data of wind speed, humidity, temperature and runway visibility. This paper shows the usefulness of the proposed prediction model of runway visual range by comparing with the measured data.

Mitochondria: multifaceted regulators of aging

  • Son, Jyung Mean;Lee, Changhan
    • BMB Reports
    • /
    • v.52 no.1
    • /
    • pp.13-23
    • /
    • 2019
  • Aging is accompanied by a time-dependent progressive deterioration of multiple factors of the cellular system. The past several decades have witnessed major leaps in our understanding of the biological mechanisms of aging using dietary, genetic, pharmacological, and physical interventions. Metabolic processes, including nutrient sensing pathways and mitochondrial function, have emerged as prominent regulators of aging. Mitochondria have been considered to play a key role largely due to their production of reactive oxygen species (ROS), resulting in DNA damage that accumulates over time and ultimately causes cellular failure. This theory, known as the mitochondrial free radical theory of aging (MFRTA), was favored by the aging field, but increasing inconsistent evidence has led to criticism and rejection of this idea. However, MFRTA should not be hastily rejected in its entirety because we now understand that ROS is not simply an undesired toxic metabolic byproduct, but also an important signaling molecule that is vital to cellular fitness. Notably, mitochondrial function, a term traditionally referred to bioenergetics and apoptosis, has since expanded considerably. It encompasses numerous other key biological processes, including the following: (i) complex metabolic processes, (ii) intracellular and endocrine signaling/communication, and (iii) immunity/inflammation. Here, we will discuss shortcomings of previous concepts regarding mitochondria in aging and their emerging roles based on recent advances. We will also discuss how the mitochondrial genome integrates with major theories on the evolution of aging.

An Experimental Study on the Characteristics of Microporous Structure Formation by Curing Condition of Cement and Blast Furnace Slag Composite (시멘트 및 고로슬래그 경화체의 양생환경에 따른 미세 공극구조 형성 특성에 관한 실험적 연구)

  • Park, Cheol;Jung, Yeon-Sik;Seo, Chee-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.63-70
    • /
    • 2017
  • When industrial by-products like slag and fly ash are using in concrete with cement, it improves strength and durability against external deterioration factors by densifying the structure through potential hydraulic and pozzolanic reaction. But it has been pointed out that high dependence on the quality variation and the curing condition using a admixure material for concrete. In this study, the characteristics of internal micropore structure according to curing condition were analyzed for pastes and mortar specimens under using blast furnace slag powder. As a result, the variation of compressive strength and the internal microstructure were observed according to curing conditions by binder type. Particularly, using blast furnace slag powder, decrease in compressive strength were clearly observed in indoor and carbonation curing compared with water curing. The pore structure analysis also clearly observed the decrease of the gel pore existing in the CSH hydrate layer and the increase of the capillary pore in indoor and carbonation curing compared with water curing condition.

A Review on Degradation of Silicon Photovoltaic Modules

  • Yousuf, Hasnain;Khokhar, Muhammad Quddamah;Zahid, Muhammad Aleem;Kim, Jaeun;Kim, Youngkuk;Cho, Sung Bae;Cho, Young Hyun;Cho, Eun-Chel;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.17 no.1
    • /
    • pp.19-32
    • /
    • 2021
  • Photovoltaic (PV) panels are generally treated as the most dependable components of PV systems; therefore, investigations are necessary to understand and emphasize the degradation of PV cells. In almost all specific deprivation models, humidity and temperature are the two major factors that are responsible for PV module degradation. However, even if the degradation mode of a PV module is determined, it is challenging to research them in practice. Long-term response experiments should thus be conducted to investigate the influences of the incidence, rates of change, and different degradation methods of PV modules on energy production; such models can help avoid lengthy experiments to investigate the degradation of PV panels under actual working conditions. From the review, it was found that the degradation rate of PV modules in climates where the annual average ambient temperature remained low was -1.05% to -1.16% per year, and the degree of deterioration of PV modules in climates with high average annual ambient temperatures was -1.35% to -1.46% per year; however, PV manufacturers currently claim degradation rates of up to -0.5% per year.

A Case Study on Explosive Demolition of a Industrial Plant Foundation (산업용 플랜트 기초의 발파해체 시공사례)

  • Noh, You-Song;Kim, Nae-Hoi;Jang, Seong-Ok;Suk, Chul-Gi;Park, Hoon
    • Explosives and Blasting
    • /
    • v.39 no.1
    • /
    • pp.22-35
    • /
    • 2021
  • The number of a industrial plant that must be demolished due to functional and structural deterioration has been increased. There is an increasing application of explosive demolition or explosive demolition combined with mechanical demolition to minimize temporal and spatial environmental hazardous factors created during the process of demolition. In this case study, to demolish the industrial plant foundation, which is a reinforced concrete structure, the explosive demolition technique was conducted. As a result of the explosive demolition, the overall crushing of plant foundation structure was satisfactory, and the explosive demolition was completed without causing any damage to surrounding facilities.

Selection of Optimal Processing Conditions for Quartz Using the Taguchi Method (다구찌법을 이용한 석영의 최적 가공조건 선정에 관한 연구)

  • Jeong, Ho-In;Choi, Seong-Jun;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.123-129
    • /
    • 2022
  • Quartz (SiO2) has high abrasion and heat resistances and excellent chemical and mechanical properties; therefore, it is used in various industries, such as machinery, chemistry, optics, and medicine. Quartz is a high-hardness and brittle material and is classified as the topmost difficult-to-cut material, which is because of the cracking or chipping at the edge during processing. Corner wear, such as cracks and chippings that occur during cutting, is a major cause for the deterioration in the machining quality. Therefore, many researchers are investigating various techniques to process quartz effectively. However, owing to the mechanical properties of quartz, most studies have been conducted on grinding, micromachining, and microdrilling. Few studies have been conducted on quartz processing. The purpose of this study was to analyze the machining characteristics according to the machining factors during the slot machining of quartz using a cubic boron nitride (CBN) tool and to select the optimal machining conditions using the Taguchi method. The machining experiment was performed considering three process variables: the spindle speed, feed rate, and depth of cut. The cutting force and surface roughness were analyzed according to the processing conditions.