• Title/Summary/Keyword: Detector Thickness

Search Result 224, Processing Time 0.026 seconds

Development of Real Time On-Line Thickness Measuring System for Insulated Pipeline (단열배관의 온라인 두께측정시스템 개발)

  • Jang, Ji-Hun;Kim, Byeong-Ju;Jo, Gyeong-Sik;Kim, Gi-Dong
    • 연구논문집
    • /
    • s.32
    • /
    • pp.65-76
    • /
    • 2002
  • The intensity of x-ray or gamma-ray is attenuated according to density and thickness of the transmitted medium. In this study, by using this principle, on-line real-time radiometric system was developed using a 128 channels linear array of solid state detectors to measure wall thickness of insulated piping system. This system uses a Ir-192 as a gamma ray source and detector is composed of BGO scintillator and photodiode. Ir-192 gamma ray source and linear detector array mounted on a computer controlled robotic crawler. The Ir-192 gamma ray source is located on one side of the piping components and the detector array on the other side. The individual detectors of the detector array measure the intensity of the gamma rays after passing through the walls and the insulation of the piping component under measurement. The output of the detector array is amplified by amplifier and transmitted to the computer. This system collects and analyses the data from the detector array in real-time. The maximum measurable length of pipe is 120cm/mm. in the case of 1mm scanning interval.

  • PDF

A Design of the Thickness Gauge Using the Compton Gamma-ray Backscattering

  • B.S. Moon;Kim, Y.K.;Kim, J.Y.;Kim, J.T.;C.E. Chung;S.B. Hong
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.457-464
    • /
    • 2000
  • In this paper, we describe the results of various calculations performed for a design of the thickness gauges that use the gamma-ray backscattering method. The radiation source is assumed to be the $_{24}$1Am(60keV gamma-ray) and the detector is a single crystal scintillator in a cylindrical form. The source is located at the center of the detector with the collimator of a cylindrical shape. First, when gamma-rays are incident on a material with a constant angle, we compute the variations of the spectrum for the photons scattered into different angular intervals. Next, we compute for an optimal size for the collimator cylinder for a fixed detector size and an optimal distance from the detector to the material. Finally, we compute the number of observed photons for different thickness of two different materials, a plastic film and an Al foil.

  • PDF

Development of Dual Energy Radiation Detector (이중 에너지 방사선 검출기 개발)

  • Yeo, Hwa-Yeon
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.3
    • /
    • pp.5-11
    • /
    • 2010
  • In this paper, we are suggested development of dual-mode detector for dual-energy digital radiography. Design of dual-energy radiography module for commercial BIS (Baggage Inspection System) is used in the spectrum of the X-ray generator and detector for dual-mode features and radiological characteristics were analyzed. BIS suggestl on the image detector module being used to target X-ray tube to simulate X-ray spectrum and simulated spectrum to offer through the new radiographic characteristics of the detector modules were investigated. Using X-ray experiments with an increase in the thickness of the copper filter low energy detector (LED) and high-energy detector (HED) as the difference between the output signal increases. HED, especially in the size of the output signal decreases with increasing thickness of the copper filter was found.

Dead Layer Thickness and Geometry Optimization of HPGe Detector Based on Monte Carlo Simulation

  • Suah Yu;Na Hye Kwon;Young Jae Jang;Byungchae Lee;Jihyun Yu;Dong-Wook Kim;Gyu-Seok Cho;Kum-Bae Kim;Geun Beom Kim;Cheol Ha Baek;Sang Hyoun Choi
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.129-135
    • /
    • 2022
  • Purpose: A full-energy-peak (FEP) efficiency correction is required through a Monte Carlo simulation for accurate radioactivity measurement, considering the geometrical characteristics of the detector and the sample. However, a relative deviation (RD) occurs between the measurement and calculation efficiencies when modeling using the data provided by the manufacturers due to the randomly generated dead layer. This study aims to optimize the structure of the detector by determining the dead layer thickness based on Monte Carlo simulation. Methods: The high-purity germanium (HPGe) detector used in this study was a coaxial p-type GC2518 model, and a certified reference material (CRM) was used to measure the FEP efficiency. Using the MC N-Particle Transport Code (MCNP) code, the FEP efficiency was calculated by increasing the thickness of the outer and inner dead layer in proportion to the thickness of the electrode. Results: As the thickness of the outer and inner dead layer increased by 0.1 mm and 0.1 ㎛, the efficiency difference decreased by 2.43% on average up to 1.0 mm and 1.0 ㎛ and increased by 1.86% thereafter. Therefore, the structure of the detector was optimized by determining 1.0 mm and 1.0 ㎛ as thickness of the dead layer. Conclusions: The effect of the dead layer on the FEP efficiency was evaluated, and an excellent agreement between the measured and calculated efficiencies was confirmed with RDs of less than 4%. It suggests that the optimized HPGe detector can be used to measure the accurate radioactivity using in dismantling and disposing medical linear accelerators.

Influence of the Thin-Film Ag Electrode Deposition Thickness on the Current Characteristics of a CVD Diamond Radiation Detector

  • Ban, Chae-Min;Lee, Chul-Yong;Jun, Byung-Hyuk
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.131-136
    • /
    • 2018
  • Background: We investigated the current characteristics of a thin-film Ag electrode on a chemical vapor deposition (CVD) diamond. The CVD diamond is widely recognized as a radiation detection material because of its high tolerance against high radiation, stable response to various dose rates, and good sensitivity. Additionally, thin-film Ag has been widely used as an electrode with high electrical conductivity. Materials and Methods: Considering these properties, the thin-film Ag electrode was deposited onto CVD diamonds with varied deposition thicknesses (${\fallingdotseq}50/98/152/257nm$); subsequently, the surface thickness, surface roughness, leakage current, and photo-current were characterized. Results and Discussion: The leakage current was found to be very low, and the photo-current output signal was observed as stable for a deposited film thickness of 98 nm; at this thickness, a uniform and constant surface roughness of the deposited thin-film Ag electrode were obtained. Conclusion: We found that a CVD diamond radiation detector with a thin-film Ag electrode deposition thickness close to 100 nm exhibited minimal leakage current and yielded a highly stable output signal.

Development of Real-Time Thickness Measuring System for Insulated Pipeline Using Gamma-ray (감마선을 이용한 단열배관의 실시간 두께측정시스템 개발)

  • Jang, Ji-Hoon;Kim, Byung-Joo;Kim, Gi-Dong;Cho, Kyung-Shik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.500-507
    • /
    • 2002
  • By this study, on-line real-time radiometric system was developed using a 64 channels linear array of solid state detectors to measure wall thickness of insulated piping system. This system uses an Ir-192 as a gamma ray source and detector is composed of BGO scintillator and photodiode. Ir-192 gamma ray source and linear detector array mounted on a computer controlled robotic crawler. The Ir-192 gamma ray source is located on one side of the piping components and the detector array on the other side. The individual detectors of the detector array measure the intensity of the gamma rays after passing through the walls and the insulation of the piping component under measurement. The output of the detector array is amplified by amplifier and transmitted to the computer through cable. This system collects and analyses the data from the detector array in real-time as the crawler travels over the piping system. The maximum measurable length of pipe is 120cm/min. in the case of 1mm scanning interval.

Optical Characterization of Superconducting Strip Photon Detector Using $MgB_2$

  • Shibata, H.
    • Progress in Superconductivity
    • /
    • v.14 no.2
    • /
    • pp.96-98
    • /
    • 2012
  • Bias current dependence of a superconducting strip photon detector is studied in the wavelength range of 405 to 1310 nm. The detector is made of an $MgB_2$ meander pattern with the line width of 135 nm and thickness of 10 nm. At 1310 nm, the detection efficiency exponentially decreases as the bias current decreases. While at 405 nm, the detection efficiency almost saturates in the high bias current region. These features suggest that the intrinsic detection efficiency of the $MgB_2$ detector is high at 405 nm.

The Study on Design of lead monoxide based radiation detector for Checking the Position of a Radioactive Source in an NDT (비파괴검사 분야에서 방사선원의 위치 확인을 위한 산화납 기반 방사선 검출기 설계에 관한 연구)

  • Ahn, Ki-Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.183-188
    • /
    • 2017
  • In recent years, the automatic remote control controller of the gamma ray irradiator malfunctions, and radiation workers are continuously exposed to radiation exposure accidents. In the non-destructive testing field, much time and resources are invested in establishing a radioactive source monitoring system in order to prevent potential incidents of radiation. In this study, the gamma-ray response properties of the lead monoxide-based radiation detector were estimated through monte carlo simulation as a previous study for the development of a radioactive source location monitoring system that can be applied universally to various non-destructive testing equipment. As a result of the study, the optimized thickness of the radiation detector varies according to the gamma-ray energy emitted from the radioactive source, and the optimized thickness gradually increases with increasing energy. In conclusion, the optimized thickness of the lead monoxide-based radiation detector was $200{\mu}m$ for the Ir-192, $150{\mu}m$ for the Se-75 and $300{\mu}m$ for the Co-60. Based on these results, the appropriate thickness of lead monoxide-based radiation detector considering secondary-electron equilibrium was evaluated to be $300{\mu}m$ for general application. These results can be used as a basic data for determining the appropriate thickness required in the radiation detector when developing a radiation source location monitoring system for universal application to various non-destructive testing equipment in the future.

Study on Electrical Properties of X-ray Sensor Based on CsI:Na-Selenium Film

  • Park Ji-Koon;Kang Sang-Sik;Lee Dong-Gil;Choi Jang-Yong;Kim Jae-Hyung;Nam Sang-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.3
    • /
    • pp.10-14
    • /
    • 2003
  • In this paper, we have introduced the x-ray detector built with a CsI:Na scintillation layer deposited on amorphous selenium. To determine the thickness of the CsI:Na layer, we have estimated the transmission spectra and the absorption of continuous x-rays in diagnostic range by using computer simulation (MCNP 4C). A x-ray detector with 65 ${\mu}m$-CsI:Na/30 ${\mu}m$-Se layer has been fabricated by a thermal evaporation technique. SEM and PL measurements have been performed. The dark current and x-ray sensitivity of the fabricated detector has been compared with that of the conventional a-Se detector with 100 ${\mu}m$ thickness. Experimental results show that both detectors exhibit a similar dark current, which was of a low value below $400 pA/cm^2$ at 10 V/${\mu}m$. However, the CsI:Na-Se detector indicates high x-ray sensitivity, roughly 1.3 times that of a conventional a-Se detector. Furthermore, a CsI:Na-Se detector with an aluminium reflective layer shows a 1.8 times higher x-ray sensitivity than an a-Se detector. The hybrid type detector proposed in this work exhibits a low dark current and high x-ray sensitivity, and, in particular, excellent linearity to the x-ray exposure dose.

Multi-layer design of Hybrid method for digital X-ray imaging (디지털 X-ray imaging을 위한 Hybrid 방식의 다층구조 설계)

  • Cho, Sung-Ho;Park, Ji-Koon;Lee, Dong-Gil;Kim, Dae-Hwan;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.75-78
    • /
    • 2003
  • In recent years, there has been keen interest in developing flat panel detectors for all modalities of radiology, including gerneral radiology, fluoroscopy, electronic portal imaging, and mammography. In this paper, we report the new hybrid x-ray detector consisted of ZnS(Ag) photoemission layer and a-Se photoconductor layer to resolve problem of conventional x-ray detector such as the direct detector and the indirect detector. To design the structure of ZnS(Ag)/a-Se detector, the penetrated energy spectrum and absorption fraction was estimated using MCNP 4C code. Also, we carried out the experiment to demonstrate the result of MCNP 4C code. Experimental results showed that the absorption fraction of $500{\mu}m$-ZnS(Ag) film was above 87%, 75% at 60 and 80 kVp. As a results, we can determined the thickness of suitable phosphor and the thickness of photoconductor.

  • PDF