• Title/Summary/Keyword: Detector

Search Result 6,182, Processing Time 0.026 seconds

Variation on Estimated Values of Radioactivity Concentration According to the Change of the Acquisition Time of SPECT/CT (SPECT/CT의 획득시간 증감에 따른 방사능농도 추정치의 변화)

  • Kim, Ji-Hyeon;Lee, Jooyoung;Son, Hyeon-Soo;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.2
    • /
    • pp.15-24
    • /
    • 2021
  • Purpose SPECT/CT was noted for its excellent correction method and qualitative functions based on fusion images in the early stages of dissemination, and interest in and utilization of quantitative functions has been increasing with the recent introduction of companion diagnostic therapy(Theranostics). Unlike PET/CT, various conditions like the type of collimator and detector rotation are a challenging factor for image acquisition and reconstruction methods at absolute quantification of SPECT/CT. Therefore, in this study, We want to find out the effect on the radioactivity concentration estimate by the increase or decrease of the total acquisition time according to the number of projections and the acquisition time per projection among SPECT/CT imaging conditions. Materials and Methods After filling the 9,293 ml cylindrical phantom with sterile water and diluting 99mTc 91.76 MBq, the standard image was taken with a total acquisition time of 600 sec (10 sec/frame × 120 frames, matrix size 128 × 128) and also volume sensitivity and the calibration factor was verified. Based on the standard image, the comparative images were obtained by increasing or decreasing the total acquisition time. namely 60 (-90%), 150 (-75%), 300 (-50%), 450 (-25%), 900 (+50%), and 1200 (+100%) sec. For each image detail, the acquisition time(sec/frame) per projection was set to 1.0, 2.5, 5.0, 7.5, 15.0 and 20.0 sec (fixed number of projections: 120 frame) and the number of projection images was set to 12, 30, 60, 90, 180 and 240 frames(fixed time per projection:10 sec). Based on the coefficients measured through the volume of interest in each acquired image, the percentage of variation about the contrast to noise ratio (CNR) was determined as a qualitative assessment, and the quantitative assessment was conducted through the percentage of variation of the radioactivity concentration estimate. At this time, the relationship between the radioactivity concentration estimate (cps/ml) and the actual radioactivity concentration (Bq/ml) was compared and analyzed using the recovery coefficient (RC_Recovery Coefficients) as an indicator. Results The results [CNR, radioactivity Concentration, RC] by the change in the number of projections for each increase or decrease rate (-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.5%, +3.90%, 1.04] at -90%, [-77.9%, +2.71%, 1.03] at -75%, [-55.6%, +1.85%, 1.02] at -50%, [-33.6%, +1.37%, 1.01] at -25%, [-33.7%, +0.71%, 1.01] at +50%, [+93.2%, +0.32%, 1.00] at +100%. and also The results [CNR, radioactivity Concentration, RC] by the acquisition time change for each increase or decrease rate (-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.3%, -3.55%, 0.96] at - 90%, [-73.4%, -0.17%, 1.00] at -75%, [-49.6%, -0.34%, 1.00] at -50%, [-24.9%, 0.03%, 1.00] at -25%, [+49.3%, -0.04%, 1.00] at +50%, [+99.0%, +0.11%, 1.00] at +100%. Conclusion In SPECT/CT, the total coefficient obtained according to the increase or decrease of the total acquisition time and the resulting image quality (CNR) showed a pattern that changed proportionally. On the other hand, quantitative evaluations through absolute quantification showed a change of less than 5% (-3.55 to +3.90%) under all experimental conditions, maintaining quantitative accuracy (RC 0.96 to 1.04). Considering the reduction of the total acquisition time rather than the increasing of the image acquiring time, The reduction in total acquisition time is applicable to quantitative analysis without significant loss and is judged to be clinically effective. This study shows that when increasing or decreasing of total acquisition time, changes in acquisition time per projection have fewer fluctuations that occur in qualitative and quantitative condition changes than the change in the number of projections under the same scanning time conditions.

Survey of Daily Caffeine Intakes from Children's Beverage Consumption and the Effectiveness of Nutrition Education (어린이들의 음료를 통한 카페인 섭취량 실태조사 및 영양교육에 따른 효과 평가)

  • Kim, Sung-Dan;Yun, Eun-Sun;Chang, Min-Su;Park, Young-Ae;Jung, Sun-Ok;Kim, Dong-Gyu;Kim, Youn-Cheon;Chae, Young-Zoo;Kim, Min-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.6
    • /
    • pp.709-720
    • /
    • 2009
  • This study was conducted to identify daily caffeine intakes in beverages for elementary school children and to evaluate its effectiveness after nutrition education. The caffeine contents of 140 commercial beverages were analysed by high performance liquid chromatography-ultraviolet detector (HPLC-UV) and information about their consumption were obtained by surveying 267 children. Researchers gave nutrition education to the children, who were 6 to 11 years old and attended 9 classes of 3 elementary schools, by lecture, Powerpoint file and moving picture. Their preference and intake amount on beverages were investigated by questionnaire before and after nutrition education. The order on caffeine contents was coffee ($33.8{\pm}2.4{\sim}49.1{\pm}5.6\;mg/100\;mL$)> coffee milk ($10.6{\pm}3.3\;mg/100\;mL$)> cola ($6.0{\pm}2.4\;mg/100\;mL$)> green black oolong tea drink ($6.0{\pm}2.4\;mg/100\;mL$)> chocolate milk and chocolate drink ($1.6{\pm}0.7{\sim}1.7\;mg/100\;mL$)> black ice tea mix ($1.3{\pm}1.7\;mg/100\;mL$). The order on children's preference was carbonated drink and fruit and vegetable drink (27%)> sports drink (26%)> processed cocoa mix (7%)> milk (6%)> vitamin & functional drink (3%)> green tea drink (2%)> black tea drink and coffee (1%). The average daily caffeine intakes except tea drink was $5.9{\pm}11.2$ mg/person/day ($0.17{\pm}0.32$ mg/kg bw/day), ranged from $0.0{\sim}80.5$ mg/person/day for children. The sources of caffeine were coffee 57% (3.4 mg/person/day), coffee milk 20% (1.2 mg/person/day), carbonated drink 15% (0.9 mg/person/day), chocolate milk and chocolate drink 6% (0.4 mg/person/day), and vitamin & functional drink 2% (0.1 mg/person/day). After nutrition education, the preference of carbonated drink, coffee, vitamin drinks & functional drink was decreased significantly (p<0.05, p<0.05, p<0.01) and the intakes of carbonated drink, chocolate milk & chocolate drink, and vitamin & functional drink were also decreased significantly (p<0.01, p<0.05, p<0.01). This study has shown that nutrition education influences the preference and the intake behavior of caffeinated beverages.