• Title/Summary/Keyword: Detectivity

Search Result 76, Processing Time 0.023 seconds

Improvement of the Figure of Merit in Pb[(Mg1/3Ta2/3)0.7Ti0.3]O3 Systems

  • Kim, Yeon Jung
    • Applied Science and Convergence Technology
    • /
    • v.25 no.5
    • /
    • pp.88-91
    • /
    • 2016
  • The $Pb[(Mg_{1/3}Ta_{2/3})_{0.7}Ti_{0.3}]O_3$+xwt%PbO systems at temperature of $1250^{\circ}C$ for 4 hours was successful synthesized. In this study, PbO-doped $Pb[(Mg_{1/3}Ta_{2/3})_{0.7}Ti_{0.3}]O_3$ systems with non-linear behaviors showed ordering-degree dependence at the low temperature range were prepared using the columbite precursor method. And the characteristic of remnant polarization vs. electric field were analyzed. The pyroelectric, dielectric and piezoelectric properties of partially disordered $Pb[(Mg_{1/3}Ta_{2/3})_{0.7}Ti_{0.3}]O_3$+xwt%PbO solid solutions were studied as a function of temperature, frequency, and electric field. It showed distinct features of temperature dependent of pyroelectric coefficient, spontaneous polarization and dielectric constant at about $50^{\circ}C$. The figure of merit was calculated as pyroelectric coefficient, dielectric constant and dissipation factor. It was found that the high voltage responsivity FV, high detectivity FD were $0.0373m^2/C$ and $0.6735{\times}10^{-4}Pa{-1/2}$, respectively, in the $Pb[(Mg_{1/3}Ta_{2/3})_{0.7}Ti_{0.3}]O_3$+3.0 wt%PbO system.

Uncooled Metallic Thin-film Thermopile Infrared Detector (비냉각 금속 박막형 열전퇴 적외선 검지기)

  • Oh, Kwang-Sik;Cho, Hyun-Duk;Kim, Jin-Sup;Lee, Yong-Hyun;Lee, Jong-Hyun;Lee, Jung-Hee;Park, Se-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.2
    • /
    • pp.5-12
    • /
    • 2000
  • Uncooled metallic thin-film thermopile infrared detectors have been fabricated, and the figures of merit for the detectors were examined. The hot junctions of a thermopile were prepared on a $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$-membrane which acts as a thermal isolation layer, the cold junctions on the membrane supported with the silicon rim which functions as a heat sink, and Au-black was used as an infrared absorber. Infrared absorbance of Au-black, which strongly depends on the chamber pressure during Au-evaporation and its mass per area, was found to be about 90 % in the wavelength range from 3${\mu}{\textrm}{m}$ to 14${\mu}{\textrm}{m}$. Voltage responsivity, noise equivalent power, and specific detectivity of Bi-Sb thermopile infrared detector at 5 Hz-chopping frequency were about 10.5V/W, 2.3 nW/Hz$^{1/2}$, 및 $1.9\times10^{7}$ cm.Hz$^{1/2}$/w at room temperature in air, respectively.

  • PDF

$1{times}8$ Array of GaAs/AlGaAs quantum well infrared photodetector with 7.8$\mu\textrm{m}$ peak response ($1{times}8$ 배열, 7.8 $\mu\textrm{m}$ 최대반응 GaAs/AlGaAs 양자우물 적외선 검출기)

  • 박은영;최정우;노삼규;최우석;박승한;조태희;홍성철;오병성;이승주
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.6
    • /
    • pp.428-432
    • /
    • 1998
  • We fabricated 1$\times$8 array of GaAs/AlGaAs quantum well infrared photodetectors for the long wavelength infrared detection which is based on the bound-continuum intersubband transition, and characterized its electrical and optical properties. The device was grown on SI-GaAs(100) by the molecular beam epitaxy and consisted of 25 period of 40 ${\AA} $ GaAs well and 500 ${\AA} $ $Al_{0.28} Ga_{0.72}$ As barrier. To reduce the possibility of interface states only the center 20 ${\AA} $ of the well was doped with Si ($N_D=2{\times}10^{18} cm^{-3}$). We etched the sample to make square mesas of 200$\times$200 $\mu\textrm{m}^2$ and made an ohmic contact on each pixel with Au/Ge. Current-voltage characteristics and photoresponse spectrum of each detector reveal that the array was highly uniform and stable. The spectral responsivity and the detectivity $D^*$ were measured to be 180,260 V/W and $4.9{\times}10^9cm\sqrt{Hz}/W$ respectively at the peak wavelength of $\lambda$ =7.8 $\mu\textrm{m}$ and at T=10 K.

  • PDF

Dynamic Pyroelectric Properties of The $Pb(Zr_{0.9}Ti_{0.1})O_3$ Ceramics ($Pb(Zr_{0.9}Ti_{0.1})O_3$ 세라믹 Dynamic 초전특성에 관한 연구)

  • Min, Kyung-Jin;Kang, Seong-Jun;Chang, Dong-Hoon;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.8
    • /
    • pp.28-34
    • /
    • 2000
  • Pyroelectric properties of the $Pb(Zr_{0.9}Ti_{0.1})O_3$ ceramics having the rhombohedral structure have been studied by using the dynamic measurement method. The pyroelectric responses of the $Pb(Zr_{0.9}Ti_{0.1})O_3$ ceramics are characterized in both low and high medulation frequency regions and their frequency depences are observed. In the low frequency region (2~200Hz), the change of polarization increases and shows the maximum since the reorientation rate of domains is higher than the modulation frequency. Inthe high frequency region (200~2000Hz), the pyroelectrci response decreases as the frequency increases, because the reorientation of domains is suppressed and so the change of polarization decreases. Pyroelectric coefficient, figure of merit, noise equivalent power and detectivity of the $Pb(Zr_{0.9}Ti_{0.1})O_3$ ceramics are measured as $1.6{\times}10^{-8}C/cm^2{\cdot},\;1.6{\times}10^{-11}C{\cdot}cm/J,\;2.4{\times}10^{-7}W/Hz^{1/2}\;and\;4.17{\times}10^6cm{\cdot}Hz^{1/2}/W$, respectively.

  • PDF

N- and P-doping of Transition Metal Dichalcogenide (TMD) using Artificially Designed DNA with Lanthanide and Metal Ions

  • Kang, Dong-Ho;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.292-292
    • /
    • 2016
  • Transition metal dichalcogenides (TMDs) with a two-dimensional layered structure have been considered highly promising materials for next-generation flexible, wearable, stretchable and transparent devices due to their unique physical, electrical and optical properties. Recent studies on TMD devices have focused on developing a suitable doping technique because precise control of the threshold voltage ($V_{TH}$) and the number of tightly-bound trions are required to achieve high performance electronic and optoelectronic devices, respectively. In particular, it is critical to develop an ultra-low level doping technique for the proper design and optimization of TMD-based devices because high level doping (about $10^{12}cm^{-2}$) causes TMD to act as a near-metallic layer. However, it is difficult to apply an ion implantation technique to TMD materials due to crystal damage that occurs during the implantation process. Although safe doping techniques have recently been developed, most of the previous TMD doping techniques presented very high doping levels of ${\sim}10^{12}cm^{-2}$. Recently, low-level n- and p-doping of TMD materials was achieved using cesium carbonate ($Cs_2CO_3$), octadecyltrichlorosilane (OTS), and M-DNA, but further studies are needed to reduce the doping level down to an intrinsic level. Here, we propose a novel DNA-based doping method on $MoS_2$ and $WSe_2$ films, which enables ultra-low n- and p-doping control and allows for proper adjustments in device performance. This is achieved by selecting and/or combining different types of divalent metal and trivalent lanthanide (Ln) ions on DNA nanostructures. The available n-doping range (${\Delta}n$) on the $MoS_2$ by Ln-DNA (DNA functionalized by trivalent Ln ions) is between $6{\times}10^9cm^{-2}$ and $2.6{\times}10^{10}cm^{-2}$, which is even lower than that provided by pristine DNA (${\sim}6.4{\times}10^{10}cm^{-2}$). The p-doping change (${\Delta}p$) on $WSe_2$ by Ln-DNA is adjusted between $-1.0{\times}10^{10}cm^{-2}$ and $-2.4{\times}10^{10}cm^{-2}$. In the case of Co-DNA (DNA functionalized by both divalent metal and trivalent Ln ions) doping where $Eu^{3+}$ or $Gd^{3+}$ ions were incorporated, a light p-doping phenomenon is observed on $MoS_2$ and $WSe_2$ (respectively, negative ${\Delta}n$ below $-9{\times}10^9cm^{-2}$ and positive ${\Delta}p$ above $1.4{\times}10^{10}cm^{-2}$) because the added $Cu^{2+}$ ions probably reduce the strength of negative charges in Ln-DNA. However, a light n-doping phenomenon (positive ${\Delta}n$ above $10^{10}cm^{-2}$ and negative ${\Delta}p$ below $-1.1{\times}10^{10}cm^{-2}$) occurs in the TMD devices doped by Co-DNA with $Tb^{3+}$ or $Er^{3+}$ ions. A significant (factor of ~5) increase in field-effect mobility is also observed on the $MoS_2$ and $WSe_2$ devices, which are, respectively, doped by $Tb^{3+}$-based Co-DNA (n-doping) and $Gd^{3+}$-based Co-DNA (p-doping), due to the reduction of effective electron and hole barrier heights after the doping. In terms of optoelectronic device performance (photoresponsivity and detectivity), the $Tb^{3+}$ or $Er^{3+}$-Co-DNA (n-doping) and the $Eu^{3+}$ or $Gd^{3+}$-Co-DNA (p-doping) improve the $MoS_2$ and $WSe_2$ photodetectors, respectively.

  • PDF

Improved Device Performance Due to AlxGa1-xAs Barrier in Sub-monolayer Quantum Dot Infrared Photodetector

  • Han, Im Sik;Byun, Young-Jin;Lee, Yong Seok;Noh, Sam Kyu;Kang, Sangwoo;Kim, Jong Su;Kim, Jun Oh;Krishna, Sanjay;Ku, Zahyun;Urbas, Augustine;Lee, Sang Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.298-298
    • /
    • 2014
  • Quantum dot infrared photodetectors (QDIPs) based on Stranski-Krastanov (SK) quantum dots (QDs) have been widely explored for improved device performance using various designs of heterostructures. However, one of the biggest limitations of this approach is the "pancake" shape of the dot, with a base of 20-30 nm and a height of 4-6 nm. This limits the 3D confinement in the quantum dot and reduces the ratio of normal incidence absorption to the off-axis absorption. One of the alternative growth modes to the formation of SK QDs is a sub-monolayer (SML) deposition technique, which can achieve a much higher density, smaller size, better uniformity, and has no wetting layer as compared to the SK growth mode. Due to the advantages of SML-QDs, the SML-QDIP design has attractive features such as increased normal incidence absorption, strong in-plane quantum confinement, and narrow spectral wavelength detection as compared with SK-DWELL. In this study, we report on the improved device performance of InAs/InGaAs SML-QDIP with different composition of $Al_xGa1-_xAs$ barrier. Two SML-QDIPs (x=0.07 for sample A and x=0.20 for sample B) are grown with the 4 stacks 0.3 ML InAs. It is investigated that sample A with a confinement-enhanced (CE) $Al_{0.22}Ga_{0.78}As$ barrier had a single peak at $7.8{\mu}m$ at 77 K. However, sample B with an $Al_{0.20}Ga_{0.80}As$ barrier had three peaks at (${\sim}3.5{\mu}m$, ${\sim}5{\mu}m$, ${\sim}7{\mu}m$) due to various quantum confined transitions. The measured peak responsivities (see Fig) are ~0.45 A/W (sample A, at $7.8{\mu}m$, $V_b=-0.4V$ bias) and ~1.3 A/W (sample B, at $7{\mu}m$, $V_b=-1.5V$ bias). At 77 K, sample A and B had a detectivity of $1.2{\times}10^{11}cm.Hz^{1/2}/W$ ($V_b=-0.4V$ bias) and $5.4{\times}10^{11}cm.Hz^{1/2}/W$ ($V_b=-1.5V$ bias), respectively. It is obvious that the higher $D^*$ of sample B (than sample A) is mainly due to the low dark current and high responsivity.

  • PDF