• Title/Summary/Keyword: Detection potential

Search Result 1,687, Processing Time 0.03 seconds

Parallel damage detection through finite frequency changes on multicore processors

  • Messina, Arcangelo;Cafaro, Massimo
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.457-469
    • /
    • 2017
  • This manuscript deals with a novel approach aimed at identifying multiple damaged sites in structural components through finite frequency changes. Natural frequencies, meant as a privileged set of modal data, are adopted along with a numerical model of the system. The adoption of finite changes efficiently allows challenging characteristic problems encountered in damage detection techniques such as unexpected comparison of possible shifted modes and the significance of modal data changes very often affected by experimental/environmental noise. The new procedure extends MDLAC and exploits parallel computing on modern multicore processors. Smart filters, aimed at reducing the potential damaged sites, are implemented in order to reduce the computational effort. Several use cases are presented in order to illustrate the potentiality of the new damage detection procedure.

A study on EPD(End Point Detection) controller on plasma teaching process (플라즈마 식각공정에서의 EPD(End Point Detection) 제어기에 관한 연구)

  • 최순혁;차상엽;이종민;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.415-418
    • /
    • 1996
  • Etching Process, one of the most important process in semiconductor fabrication, has input control part of which components are pressure, gas flow, RF power and etc., and plasma gas which is complex and not exactly understood is used to etch wafer in etching chamber. So this process has not real-time feedback controller based on input-output relation, then it uses EPD(End Point Detection) signal to determine when to start or when to stop etching. Various type EPD controller control etching process using EPD signal obtained from optical intensity of etching chamber. In development EPD controller we concentrate on compensation of this signal intensity and setting the relative signal magnitude at first of etching. We compensate signal intensity using neural network learning method and set the relative signal magnitude using fuzzy inference method. Potential of this method which improves EPD system capability is proved by experiences.

  • PDF

Detection of Leakage Point via Frequency Analysis of a Pipeline Flow

  • Kim, Sanghyun;Wansuk Yoo;Injoon Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.232-238
    • /
    • 2001
  • Fast Fourier Transformation is employed to convert the head variation of a pipeline in the time domain to the amplitude of the frequency domain. Applying method of characteristics to a pipeline provides a significant frequency range for a surge introduced from the valve modulation. Inverse Fast Fourier Transformation and a Finite Impulse Response Filter can be used to remove any possible noise existing from the significant frequency range of an unsteady condition. A filtered signal shows higher potential for the inverse calculation of leakage detection than the noise-added signal does. The respective performances of Inverse Fast Fourier Transformation and a Finite Impulse Response Filter are compared in terms of leakage detection capability. Characteristics of the frequency range for multiple leakages were investigated to validate the effectiveness of the noise control method in the frequency domain.

  • PDF

Automated Detection of Cattle Mounting using Side-View Camera

  • Chung, Yongwha;Choi, Dongwhee;Choi, Heesu;Park, Daihee;Chang, Hong-Hee;Kim, Suk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3151-3168
    • /
    • 2015
  • Automatic detection of estrus in cows is important in cattle management. This paper proposes a method of estrus detection by automatically checking cattle mounting. We use a side-view video camera and apply computer vision techniques to detect mounting behavior. In particular, we extract motion information to select a potential mount-up and mount-down motion and then verify the true mounting behavior by considering the direction, magnitude, and history of the mount motion. From experimental results using video data obtained from a Korean native cattle farm, we believe that the proposed method based on the abrupt change of a mounting cow's height and motion history information can be utilized for detecting mounting behavior automatically, even in the case of fence occlusion.

ANN-based Real-Time Damage Detection Algorithm using Output-only Acceleration Signals (가속도를 이용한 인공신경망 기반 실시간 손상검색기법)

  • Kim, Jung-Tae;Park, Jae-Hyung;Do, Han-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.43-48
    • /
    • 2007
  • In this study, an ANN-based damage detection algorithm using acceleration signals is developed for alarming locations of damage in beam-type structures. A new ANN-algorithm using output-only acceleration responses is designed for damage detection in real time. The cross-covariance of two acceleration signals measured at two different locations is selected as the feature representing the structural condition. Neural networks are trained for potential loading patterns and damage scenarios of the target structure for which its actual loadings are unknown. The feasibility and practicality of the proposed method are evaluated from laboratory-model tests on free-free beams for which accelerations were measured before and after several damage cases.

  • PDF

P wave Detection Algorithm using Cardiologist's Estimation Method (전문가의 추론방법을 이용한 P파 검출 알고리즘)

  • Lee, Gee-Yeon;Hwang, Sung-Oh;Yoon, Young-Ro;Yoon, Hyung-Ro
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.186-189
    • /
    • 1995
  • This paper performed P wave detection algorithm for diagnosis in according to method of cardiologist's P wave detection. We used correlation pattern matching for prominent P waves and P-P interval estimation for ambiguous P waves. Results of this study indicate that this algorithm has potential for improving P wave detection performance.

  • PDF

Real-time Intrusion-Detection Parallel System for the Prevention of Anomalous Computer Behaviours (비정상적인 컴퓨터 행위 방지를 위한 실시간 침입 탐지 병렬 시스템에 관한 연구)

  • 유은진;전문석
    • Review of KIISC
    • /
    • v.5 no.2
    • /
    • pp.32-48
    • /
    • 1995
  • Our paper describes an Intrusion Detection Parallel System(IDPS) which detects an anomaly activity corresponding to the actions that interaction between near detection events. IDES uses parallel inductive approaches regarding the problem of real-time anomaly behavior detection on rule-based system. This approach uses sequential rule that describes user's behavior and characteristics dependent on time. and that audits user's activities by using rule base as data base to store user's behavior pattern. When user's activity deviates significantly from expected behavior described in rule base. anomaly behaviors are recorded. Observed behavior is flagged as a potential intrusion if it deviates significantly from the expected behavior or if it triggers a rule in the parallel inductive system.

  • PDF

Application of Change Detection Techniques Using KOMPSAT-1 EOC Images

  • Kim, Youn-Soo;Lee, Kwang-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.263-269
    • /
    • 2003
  • This research examined the capabilities of KOMPSAT-1 EOC images for the application of urban environment, including the urban changes of the study areas. This research is constructed in three stages: Firstly, for the application of change detection techniques, which utilizes multi-temporal remotely sensed data, the data normalization process is carried out. Secondly, the change detection method is applied for the systematic monitoring of land-use changes. Lastly, using the results of the previous stages, the land-use map is updated. Consequently, the patterns of land-use changes are monitored by the proposed scheme. In this research, using the multi-temporal KOMPSAT-1 EOC images and land-use maps, monitoring of urban growth was carried out with the application of land-use changes, and the potential and scope of the application of the EOC images were also examined.

Application of Genetic Algorithm for Large-Scale Multiuser MIMO Detection with Non-Gaussian Noise

  • Ran, Rong
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.2
    • /
    • pp.73-78
    • /
    • 2022
  • Based on experimental measurements conducted on many different practical wireless communication systems, ambient noise has been shown to be decidedly non-Gaussian owing to impulsive phenomena. However, most multiuser detection techniques proposed thus far have considered Gaussian noise only. They may therefore suffer from a considerable performance loss in the presence of impulsive ambient noise. In this paper, we consider a large-scale multiuser multiple-input multiple-output system in the presence of non-Gaussian noise and propose a genetic algorithm (GA) based detector for large-dimensional multiuser signal detection. The proposed algorithm is more robust than linear multi-user detectors for non-Gaussian noise because it uses a multi-directional search to manipulate and maintain a population of potential solutions. Meanwhile, the proposed GA-based algorithm has a comparable complexity because it does not require any complicated computations (e.g., a matrix inverse or derivation). The simulation results show that the GA offers a performance gain over the linear minimum mean square error algorithm for both non-Gaussian and Gaussian noise.

Robust Lane Detection Algorithm for Autonomous Trucks in Container Terminal

  • Ngo Quang Vinh;Sam-Sang You;Le Ngoc Bao Long;Hwan-Seong Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.252-253
    • /
    • 2023
  • Container terminal automation might offer many potential benefits, such as increased productivity, reduced cost, and improved safety. Autonomous trucks can lead to more efficient container transport. A robust lane detection method is proposed using score-based generative modeling through stochastic differential equations for image-to-image translation. Image processing techniques are combined with Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Genetic Algorithm (GA) to ensure lane positioning robustness. The proposed method is validated by a dataset collected from the port terminals under different environmental conditions and tested the robustness of the lane detection method with stochastic noise.

  • PDF