천해 영역에서 선박과 같은 수상 소음원의 간섭 신호는 정합장처리를 이용한 수중 표적 탐지 및 위치추정 기법 적용에 있어 문제점으로 남아있다. 정지 음원의 경우 수신기공간의 음장에 대한 고유벡터분해를 통해 각 음원 성분을 분리하고 간섭 신호 성분을 제거할 수 있다. 하지만 일반적인 이동 음원 환경에서는 각 신호 성분의 에너지가 수신 음장의 부분공간에 퍼지게 되므로, 고유값 분포 비교만으로 각 신호 성분을 구별하기 어렵게 되거나 하나의 고유벡터에 각 신호성분이 섞이는 경우도 발생한다. 본 논문에서는 수상 음원과 수중 음원 신호의 물리적 특성 차이를 이용한 모드공간 간섭 신호 제거 기법을 제안하였다. 이 기법은 모드-공분산행렬에 대한 고유벡터분해를 통해 간섭 신호 성분을 판별하며, 이 성분들을 부분공간에서 제거함으로써 차폐되었던 표적 신호를 복원하고 위치추정을 가능하게 한다. 이를 모의실험을 통해 확인하고 결과에 대해 논의하였다.
This study developed a machine learning-based methodology to classify gravitational wave (GW) signals from black hol-eneutron star (BH-NS) mergers by combining convolutional neural network (CNN) with conditional information for feature extraction. The model was trained and validated on a dataset of simulated GW signals injected to Gaussian noise to mimic real world signals. We considered all three types of merger: binary black hole (BBH), binary neutron star (BNS) and neutron starblack hole (NSBH). We achieved up to 96% correct classification of GW signals sources. Incorporating our novel conditional information approach improved classification accuracy by 10% compared to standard time series training. Additionally, to show the effectiveness of our method, we tested the model with real GW data from the Gravitational Wave Transient Catalog (GWTC-3) and successfully classified ~90% of signals. These results are an important step towards low-latency real-time GW detection.
A real scale leakage test facility was developed to study the leak signal characteristics of water supply pipelines, and then leak tests were carried out. The facility was designed to overcome the limited experimental circumstances of domestic water supply pipeline experimental facilities. The length of the pipeline, which was installed as a straight line, is 280m. Six pipes were installed on a 70m interval with different pipe material and diameters that are DCIP(D200, D150, D100, D80), PE(D75) and PVC(D75).The intensity of the leakage is adjusted by changing the size of the leak hole and the opening rate of ball valve. Various pressure conditions were simulated using a pressure reducing valve.To minimize external noise sources which, deteriorate the quality of measured leak signal, the facility was built at a quiet area, where traffic and water consumption by customers is relatively rare. In addition, the usage of electric equipment was minimized to block out noise and the facility was operated using manual mode. From the experimental results of measured leakage signal at the facility, it was found that the signal intensity weakened and the signal of high frequency band attenuated as the distance from the water leakage point increased.
Many gravitational wave detectors are now being built or under operation throughout the world. In particular, LIGO has taken scientific data several times, although current sensitivity is not sufficient to detect the weak signals routinely. However, the sensitivities have been improving steadily over past years so that the real detection will take place in the near future. Data analysis is another important area in detecting the gravitational wave signal. We have carried out the basic research in order to implement data analysis software in Korea@home environment. We first studied the LIGO Science Collaboration Algorithm Library(LAL) software package, and extracted the module that can generate the virtual data of gravitational wave detector. Since burst sources such as merging binaries of neutron stars and black holes are likely to be detected first, we have concentrated on the simulation of such signals. This module can generate pure gravitational wave forms, noise suitable for LIGO, and combination of the signal and noise. In order to detect the gravitational signal embedded in the noisy data, we have written a simple program that employs 'matched filtering' method which is very effective in detecting the signal with known waveform. We found that this method works extremely well.
목적: 광학적 분자 발광영상은 발광효소를 이용하여 발광하는 빛의 신호를 영상화하는 기법이다. 발광하는 광량이 분자 변화 또는 세포 수와 비례하고 신호 대 잡음비가 좋아서 영상을 얻고, 정략분석이 가능하다. 이 연구에서는 정량적 분석을 위해 비례적 측정 정량화기법을 개발하였다. 대상 및 방법: 개발 중인 ALIS (animal light imaging system) 광학발광영상 카메라에서 박테리아 수를 달리한 박테리아 광원 3가지와 또 다른 3가지 광원을 이용하여 발광영상을 측정하였다. 일정한 세기의 광원에 대해서 측정 방법을 수학적으로 표현하기 위해 cd와 광속의 개념을 이용하여 간단한 수식을 유도하였다. 실험을 통해 측정시간 1초를 기준으로 얻어진 값으로 표준 정량화 함수를 얻었다. 얻어진 정량화 함수를 이용하여 박테리아를 이용한 실험에 필요한 함수의 상수 값을 구했으며, 세 가지 세기가 다른 광원을 이용하여 측정한 값을 측정시간과 함께 정량화 식에 대입하여 측정하였다. 결과: 표준측정함수를 이용하여 측정시간에 비례하는 정량적 값을 얻을 수 있었다. 정량화결과를 측정시간으로 나눠준 값은 일정하였으며, 측정시간에 대비한 비례적 값을 얻을 수 있었다. 결론: 측정한 결과를 정량화 함수에 대입하여 정량화시킨 값은 표준정량화 하기에 적합하였다. 이 정량화 방법은 다른 광학적 분자영상 장비에 적용하여도 빛의 세기를 표준화 시킬 수 있을 뿐 만 아니라 성격이 다른 각각의 광원에 대해서도 보다 정량적인 분석을 시행할 수 있으므로, 새로운 표준 정량화 방법으로 발전시킬 수 있을 것으로 기대한다.
본 논문은 딥뉴럴네트워크(deep neural network: DNN)를 이용해 사람 걸음 및 배경잡음원에 의해 발생한 마이크로 도플러 신호를 탐지 및 분류 처리하는 연구를 제안한다. 기존 분류처리 연구는 경험 및 통계적인 방법을 통해 분류기 성능에 직접적으로 영향을 미치는 의미있는 특징을 추출하기 위한 복잡한 과정을 포함한다. 그러나 딥뉴럴네트워크는 다수의 레이어 층을 단계적으로 통과하는 과정을 통해 점진적으로 특징을 재구성 및 생성하므로, 별도의 특징 추출과정을 생략할 수 있으며, 자연스럽게 네트워크상에서 특징을 생성할 수 있는 이점이 있다. 따라서 본 논문에서는 마이크로 도플러 신호 인식을 위한 딥뉴럴네트워크 효과성 입증을 위해, 이진분류기와 다층클래스 분류기를 다층퍼셉트론과 딥뉴럴네트워크를 통해 설계하고 비교분석한다. 실험 결과, 다층퍼셉트론은 이진분류기의 경우 테스트세트에 대한 분류 정확도가 90.3 %로 측정되었고, 다층클래스 분류기의 경우 테스트세트에 대한 분류정확도가 86.1 %로 측정되었다. 딥뉴럴네트워크는 이진분류기의 경우 테스트세트에 대한 분류 정확도가 97.3 %로 측정되었고, 다층클래스 분류기의 경우 테스트세트에 대한 분류정확도가 96.1 %로 측정되었다.
This study considers the environmental factors affecting propagation loss and sonar performance in the continental regions of the East Coast Sea of Korea. Water mass distributions appear to change dramatically in a few weeks. Simple calculation with the case when the NKCW (North Korean Cold Water) develops shows that the difference in propagation loss may reach in the worst up to 10dB over range 5km. Another factor, an eddy, has typical dimensions of 100-200km in diameter and 150-200m in thickness. Employing a typical eddy and assuming frequency to be 100Hz, its effects on propagation loss appear to make lower the normal formation of convergence zones with which sonars are possible to detect long-range targets. The change of convergence zones may result in 10dB difference in received signals in a given depth. Thermal fronts also appear to be critical restrictions to operating sonars in shallow waters. Assuming frequency to be 200Hz, thermal fronts can make 10dB difference in propagation loss between with and without them over range 20km. An observation made in one site in the East Coast Sea of Korea reveals that internal waves may appear in near-inertial period and their spectra may exist in periods 2-17min. A simulation employing simple internal wave packets gives that they break convergence zones on the bottom, causing the performance degradation of FOM as much as 4dB in frequency 1kHz. An acoustic experiment, using fixed source and receiver at the same site, shows that the received signals fluctuate tremendously with time reaching up to 6.5dB in frequencies 1kHz or less. Ambient noises give negative effects directly on sonar performance. Measurements at some sites in the East Coast Sea of Korea suggest that the noise levels greatly fluctuate with time, for example noon and early morning, mainly due to ship traffics. The average difference in a day may reach 10dB in frequency 200Hz. Another experiment using an array of hydrophones gives that the spectrum levels of ambient noises are highly directional, their difference being as large as 10dB with vertical or horizontal angles. This fact strongly implies that we should obtain in-situ information of noise levels to estimate reasonable sonar performance. As one of non-stationary noise sources, an eel may give serious problems to sonar operation on or under the sea bottoms. Observed eel noises in a pier of water depth 14m appear to have duration time of about 0.4 seconds and frequency ranges of 0.2-2.8kHz. The 'song'of an eel increases ambient noise levels to average 2.16dB in the frequencies concerned, being large enough to degrade detection performance of the sonars on or below sediments. An experiment using hydrophones in water and sediment gives that sensitivity drops of 3-4dB are expected for the hydrophones laid in sediment at frequencies of 0.5-1.5kHz. The SNR difference between in water and in sediment, however, shows large fluctuations rather than stable patterns with the source-receiver ranges.
본 논문에서는 사람의 손동작에 의해 모바일장치상의 전기장센서를 통해 감지되는 동작신호의 실시간 검출 및 프레임 추출 알고리즘을 제안한다. 동작인식에 사용되는 전기장센서는 주변 환경 및 시점에 따라 랜덤잡음 및 센서 표면의 초기 대전상태의 가변적인 특성으로 인해 안정적으로 동작신호를 검출하는데 어려움이 있다. 본 논문에서는 이와 같은 환경에서도 안정적이고 강건하게 동작신호를 감지하여 검출할 수 있는 동적문턱치 방법(dynamic thresholding method)을 제안한다. 동작발생감지여부는 10Hz low-pass 필터와 MA(Motion Average) 필터를 통한 입력신호가 특정 문턱 전압값을 넘을 경우 감지되는데 감지 시점 센서상의 정전하상태가 가변적이므로 주기적으로 offset 값을 계산하여 새로운 문턱치를 동적으로 적용하는 방법이다. 이러한 방법으로 동작신호 감지율을 98% 이상으로 향상 시킬 수 있었다. 또한 일단 동작이 감지되면 정문턱치(positive thresold)와 부문턱치(negative threshold)의 통과시점, 횟수와 평균 동작주기를 고려한 동작신호프레임 알고리즘을 제안하였으며 이의 프레임추출 성공률도 98% 이상의 성능을 보였다. 본 논문에서 제안한 알고리즘으로 추출된 동작신호는 이후 신호정규화를 거쳐 LSTN 심층신경망 인식부를 거쳐 높은 손동작 인식률을 보임으로서 제안된 알고리즘의 우수함을 입증하였다.
표적 탐지를 위한 선형 견인 어레이는 해수의 움직임이나 견인선의 기동 방향 등에 의해 그 형상이 비선형화 된다. 이러한 비선형성의 존재는 입사신호의 파라미터 추정 오차를 유발하므로 본 논문에서는 비선형 형상의 견인 어레이를 위한 빔형성 기법을 제안한다. 제안된 기법은 두 개의 보조센서를 사용하여 수동 견인 어레이의 첫 번째 하이드로폰과 마지막 하이드로폰의 위치를 파악한 후, 두 하이드로폰 사이의 비선형 형상조향 벡터를 선형화 (Linearization)한다. 실제 수중환경에서의 컴퓨터 모의 실험을 통하여 성능 분석을 행한 결과, 비선형 견인 어레이의 형상에 관계없이 빔패턴은 이상적인 형태를 지님을 확인하였다. 그리고 다양한 입사신호의 신호 대 잡음비 환경 하에서 위상 성분 추정의 한계를 보임으로써 제안된 기법의 입사각 추정 성능을 평가하였으며, 이와 더불어 선형 형상을 가정한 바틀렛 빔형성 기법과의 비교 분석 결과, 현격한 성능 차이를 보였음을 확인하였다.
다양한 변조 기법을 사용하여 저피탐 능력을 갖춘 신호원들이 증가하면서, 신호의 변조 방식을 분류하는 연구가 꾸준히 진행되고 있다. 최근 신호 간섭이나 잡음 환경에서 수신 신호 분류의 성능 개선을 위하여 전처리 과정으로 FFT를 이용하는 CNN(Convolutional Neural Network) 딥러닝 기법이 제안되었다. 하지만 윈도우가 고정되는 FFT의 특성상 탐지 신호의 시간에 따른 변화를 정확히 분류해내지 못한다. 따라서 본 논문에서는 시간 영역과 주파수 영역에서 높은 해상도를 가지고 또한 다양한 유형의 신호를 시간 및 주파수 영역에서 동시에 표현할 수 있는 웨이블릿 변환(wavelet transform)을 전처리 과정으로 사용하는 CNN 모델을 제안한다. 시뮬레이션을 통해 제안하는 웨이블릿 변환 방식이 FFT 변환 방식에 비해 정확도와 학습 속도 측면에서 SNR 변화에 무관하게 우수한 성능을 보이고, 특히 낮은 SNR일 때 더욱 큰 차이를 보임을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.