• 제목/요약/키워드: Detection of mispronunciation

검색결과 8건 처리시간 0.023초

한국인의 외국어 발화오류 검출을 위한 음성인식기의 발음 네트워크 구성 (Pronunciation Network Construction of Speech Recognizer for Mispronunciation Detection of Foreign Language)

  • 이상필;권철홍
    • 대한음성학회지:말소리
    • /
    • 제49호
    • /
    • pp.123-134
    • /
    • 2004
  • An automatic pronunciation correction system provides learners with correction guidelines for each mispronunciation. In this paper we propose an HMM based speech recognizer which automatically classifies pronunciation errors when Koreans speak Japanese. We also propose two pronunciation networks for automatic detection of mispronunciation. In this paper, we evaluated performances of the networks by computing the correlation between the human ratings and the machine scores obtained from the speech recognizer.

  • PDF

음성인식기를 이용한 발음오류 자동분류 결과 분석 (Performance Analysis of Automatic Mispronunciation Detection Using Speech Recognizer)

  • 강효원;이상필;배민영;이재강;권철홍
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2003년도 10월 학술대회지
    • /
    • pp.29-32
    • /
    • 2003
  • This paper proposes an automatic pronunciation correction system which provides users with correction guidelines for each pronunciation error. For this purpose, we develop an HMM speech recognizer which automatically classifies pronunciation errors when Korean speaks foreign language. And, we collect speech database of native and nonnative speakers using phonetically balanced word lists. We perform analysis of mispronunciation types from the experiment of automatic mispronunciation detection using speech recognizer.

  • PDF

음성인식기를 이용한 한국인의 외국어 발화오류 자동 검출 (Automatic Detection of Mispronunciation Using Phoneme Recognition For Foreign Language Instruction)

  • 권철홍;강효원;이상필
    • 대한음성학회지:말소리
    • /
    • 제48호
    • /
    • pp.127-139
    • /
    • 2003
  • An automatic pronunciation correction system provides learners with correction guidelines for each mispronunciation. In this paper we propose an HMM based speech recognizer which automatically classifies pronunciation errors when Korean speak Japanese. For this purpose we also develop phoneme recognizers for Korean and Japanese. Experimental results show that the machine scores of the proposed recognizer correlate with expert ratings well.

  • PDF

외국어 발화오류 검출 음성인식기의 성능 개선을 위한 스코어링 기법 (Scoring Methods for Improvement of Speech Recognizer Detecting Mispronunciation of Foreign Language)

  • 강효원;권철홍
    • 대한음성학회지:말소리
    • /
    • 제49호
    • /
    • pp.95-105
    • /
    • 2004
  • An automatic pronunciation correction system provides learners with correction guidelines for each mispronunciation. For this purpose we develope a speech recognizer which automatically classifies pronunciation errors when Koreans speak a foreign language. In order to develope the methods for automatic assessment of pronunciation quality, we propose a language model based score as a machine score in the speech recognizer. Experimental results show that the language model based score had higher correlation with human scores than that obtained using the conventional log-likelihood based score.

  • PDF

외국어 발음오류 검출 음성인식기를 위한 MCE 학습 알고리즘 (MCE Training Algorithm for a Speech Recognizer Detecting Mispronunciation of a Foreign Language)

  • 배민영;정용주;권철홍
    • 음성과학
    • /
    • 제11권4호
    • /
    • pp.43-52
    • /
    • 2004
  • Model parameters in HMM based speech recognition systems are normally estimated using Maximum Likelihood Estimation(MLE). The MLE method is based mainly on the principle of statistical data fitting in terms of increasing the HMM likelihood. The optimality of this training criterion is conditioned on the availability of infinite amount of training data and the correct choice of model. However, in practice, neither of these conditions is satisfied. In this paper, we propose a training algorithm, MCE(Minimum Classification Error), to improve the performance of a speech recognizer detecting mispronunciation of a foreign language. During the conventional MLE(Maximum Likelihood Estimation) training, the model parameters are adjusted to increase the likelihood of the word strings corresponding to the training utterances without taking account of the probability of other possible word strings. In contrast to MLE, the MCE training scheme takes account of possible competing word hypotheses and tries to reduce the probability of incorrect hypotheses. The discriminant training method using MCE shows better recognition results than the MLE method does.

  • PDF

한국인의 외국어 발화오류검출 음성인식기에서 청취판단과 상관관계가 높은 기계 스코어링 기법 (Machine Scoring Methods Highly-correlated with Human Ratings in Speech Recognizer Detecting Mispronunciation of Foreign Language)

  • 배민영;권철홍
    • 음성과학
    • /
    • 제11권2호
    • /
    • pp.217-226
    • /
    • 2004
  • An automatic pronunciation correction system provides users with correction guidelines for each pronunciation error. For this purpose, we develop a speech recognition system which automatically classifies pronunciation errors when Koreans speak a foreign language. In this paper, we propose a machine scoring method for automatic assessment of pronunciation quality by the speech recognizer. Scores obtained from an expert human listener are used as the reference to evaluate the different machine scores and to provide targets when training some of algorithms. We use a log-likelihood score and a normalized log-likelihood score as machine scoring methods. Experimental results show that the normalized log-likelihood score had higher correlation with human scores than that obtained using the log-likelihood score.

  • PDF

외국어 발화오류 검출 음성인식기를 위한 스코어링 기법 (Machine scoring method for speech recognizer detection mispronunciation of foreign language)

  • 강효원;배민영;이재강;권철홍
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2004년도 춘계 학술대회 발표논문집
    • /
    • pp.239-242
    • /
    • 2004
  • An automatic pronunciation correction system provides users with correction guidelines for each pronunciation error. For this purpose, we propose a speech recognition system which automatically classifies pronunciation errors when Koreans speak a foreign language. In this paper, we also propose machine scoring methods for automatic assessment of pronunciation quality by the speech recognizer. Scores obtained from an expert human listener are used as the reference to evaluate the different machine scores and to provide targets when training some of algorithms. We use a log-likelihood score and a normalized log-likelihood score as machine scoring methods. Experimental results show that the normalized log-likelihood score had higher correlation with human scores than that obtained using the log-likelihood score.

  • PDF

어린이집 유아의 영어 음운 인식 발달 종단 연구 (A longitudinal study on the development of English phonological awareness in preschool children)

  • 정현성
    • 말소리와 음성과학
    • /
    • 제10권4호
    • /
    • pp.53-66
    • /
    • 2018
  • This study investigated the development of English phonological awareness in preschool children based on a longitudinal study. It carried out a phonological matching task, mispronunciation task, articulation test, explicit phoneme awareness task, rhyme matching task, and initial-phoneme matching task for three-, four- and five-year-old children. A letter knowledge test was also added to the tests for the 5-year-old children. The results revealed that the development of phonological awareness follows a progression of syllable, then onset and rhyme, then phoneme. It was also revealed that language skills such as vocabulary, detection of mispronunciations, and articulation were partially related to the development of phoneme awareness. Finally, we also found that letter knowledge partially affected the children's development of phonological awareness.