도시 상태를 탐지하기 위해서는 운송 수단 수, 교통 흐름등이 필수적으로 파악되어야 할 요소이다. 본 논문에서는 기존의 Mask R-CNN을 이용하여 다양한 차량의 형태를 학습하고, 드론으로 촬영한 도시항공 영상에서 특정 유형의 차량 들을 검출하는 시스템을 오늘날 NLP 분야에서 널리 쓰이게 된 Transformer 모델을 컴퓨터 비전 문제에 도입하여 기존의 컨볼루션 신경망보다 높은 성능을 보여준 Swin Transformer 모델을 이용하여 기존의 연구에서 보여주었던 검출 시스템 능력을 향상시켰다.
본 연구에서는 UAV (Unmanned Aerial Vehicle)와 PlanetScope 위성영상을 함께 이용한 붕괴건물 탐지를 수행하여 지표면에 위치한 특정 객체 탐지에 있어 이종 센서의 활용 가능성을 제시하였다. 이를 위해 지난해 4월 산불 피해로 붕괴된 20여 채의 건물들이 있는 곳을 실험장소로 선정하였다. 붕괴건물 탐지를 위해 1차적으로 객체기반 분할을 수행한 고해상도의 UAV 영상을 이용해 ExG (Excess Green), GLCM (Gray-Level Co-occurrence Matrix) 그리고 DSM (Digital Surface Model)과 같은 객체들의 특징(feature) 정보를 생성한 후 이를 붕괴건물 후보군 탐지에 이용하였다. 이 과정에서 탐지정확도 향상을 위해 PlanetScope를 이용한 변화탐지 결과를 함께 사용하였으며 이를 시드 화소(seed pixles)로 사용하여 붕괴건물 후보군에서 오탐지된 영역과 과탐지된 영역을 수정 및 보완하였다. 최종적인 탐지 결과는 참조 영상을 통해 그 성능을 분석하였으며 UAV 영상만을 이용한 붕괴건물 후보군 탐지 결과와 UAV 그리고 PlanetScope 영상을 함께 사용했을 때의 결과의 정확도를 비교, 분석하였다. 그 결과 UAV 영상만을 이용해 탐지한 붕괴건물의 정확도는 0.4867 F1-score를 가지며 UAV와 PlanetScope 영상을 함께 사용했을 때의 결과는 0.8064 F1-score로 그 값이 상승하였다. Kappa 지수 또한 0.3674에서 0.8225로 향상된 것을 확인할 수 있었다.
한정된 정점과 인력 기반의 조사로 실제 국내 표착되는 해안 쓰레기의 총용량 추정이 어려운 우리나라의 해안 쓰레기 모니터링 방식 개선을 위해 비관리 해변에서 UAV(: Unmanned Aerial Vehicle) 이미지와 RT-DETR 모델을 기반으로 해안 쓰레기 탐지하고 현장 조사와의 비교 연구로 해안 쓰레기의 정량적 탐지 및 자연 해안선 기준 우리나라에 표착되는 전체 쓰레기 총용량 추정 가능성을 제시하였다. RT-DETR(: Realtime DEtection TRansformer) 모델 학습 결과 mAP@0.5는 0.894, mAP@0.5:0.95는 0.693의 정확도를 보였다. 모델을 비관리 해변에 적용한 전체 해안 쓰레기 개수에 대한 정확도는 72.9%로 나타났다. 본 연구와 비관리 해변에 대한 모니터링을 정의하는 관리지침 마련 연구가 동반된다면 우리나라에 표착되는 전체 해안 쓰레기의 총 용량 추정이 가능할 것으로 기대된다.
미래전장에서 대화력전(Counter Fire)의 중요성은 더욱 부각되고 있다. 대화력전은 적 화력자산과 이를 지휘통제하는 모든 요소를 타격하여 적의 화력자산의 능력과 전투지속능력 및 전의를 약화시키는 화력전투를 말한다. 대화력전은 크게 공세적 (Proactive) 대화력전과 대응적(Reactive) 대화력전으로 구분된다. 지금까지의 연구들을 보면 공세적 대화력전의 탐지수단인 UAV(Unmanned Aerial Vehicle:무인항공기)에 대한 운용효과 연구는 지속적으로 발전되고 있지만, 대응적 대화력전 탐지수단인 포병 표적탐지 레이더에 대한 운용효과를 계량적으로 분석한 결과는 없는 실정이다. 이에 본 연구에서는 운용중인 포병 표적탐지 레이더의 운용효과를 C2(Command & Control : 지휘통제)이론과 행위자 기반 시뮬레이션인 MANA(Map Aware Non-uniform Automata)모델을 이용하여 계량적으로 분석 제시함으로써 표적탐지레이더 운용 효과를 구체적으로 보여주었다.
문화재의 현황 파악 및 복원을 위한 3차원 모델링에 있어서 지상 LiDAR와 UAV의 활용방안을 제시하고자 대상 문화재에 대해 지상 LiDAR 측량을 실시하고 UAV 영상을 취득하였다. 이를 통해 생성된 포인트 클라우드의 정확도를 비교하고 3차원 모델의 중첩분석 및 융합 모델을 생성하였다. 그 결과, 문화재의 변위 및 변형을 감지하기 위해 실시하는 3차원 모델링의 경우에는 지상 LiDAR를 이용한 정밀한 모델링이 적합함을 알 수 있었으며, UAV 모델은 지상 LiDAR 모델에 비해 급격한 굴곡이 발생하는 부분을 상세하게 표현하지 못하는 한계가 있지만 UAV 모델은 모델링을 수행하는 범위가 넓으며 실물 문화재의 모델링이 가능한 이점이 있음을 알 수 있었다. 또한 최종적으로 지상 LiDAR 모델과 UAV 모델의 이점을 살린 융합 모델을 생성함으로써 문화재의 기초자료 구축 분야에서 효율적인 활용이 가능할 것으로 판단된다.
최근 3차원 공간정보에 대한 수요가 증가함에 따라 신속하고 정확한 데이터 구축의 중요성이 증대되어 왔다. 정밀한 3차원 데이터 구축이 가능한 LiDAR (Light Detection and Ranging) 데이터를 기준으로 UAV (Unmanned Aerial Vehicle) 영상을 정합하기 위한 연구가 다수 수행되어 왔으나, MMS (Mobile Mapping System)로부터 취득된 LiDAR 점군데이터의 반사강도 영상을 활용한 연구는 미흡한 실정이다. 따라서 본 연구에서는 MMS로부터 취득된 LiDAR 점군데이터를 반사영상으로 변환한 데이터와 UAV 영상 데이터의 정합을 위해 9가지의 특징점 기반매칭 기법을 비교·분석하였다. 분석 결과 SIFT (Scale Invariant Feature Transform) 기법을 적용하였을 때 안정적으로 높은 매칭 정확도를 확보할 수 있었으며, 다양한 도로 환경에서도 충분한 정합점을 추출할 수 있었다. 정합 정확도 분석 결과 SIFT 알고리즘을 적용한 경우 중복도가 낮으며 동일한 패턴이 반복되는 경우를 제외하고는 약 10픽셀 수준으로 정확도를 확보할 수 있었으며, UAV 영상 촬영 당시 UAV 자세에 따른 왜곡이 포함되어 있음을 감안할 때 합리적인 결과라고 할 수 있다. 따라서 본 연구의 분석 결과는 향후 LiDAR 점군데이터와 UAV 영상의 3차원 정합을 위한 기초연구로 활용될 수 있을 것으로 기대된다.
Dead trees significantly impact forest production and the ecological environment and pose constraints to the sustainable development of forests. A lightweight YOLOv4 dead tree detection algorithm based on unmanned aerial vehicle images is proposed to address current limitations in dead tree detection that rely mainly on inefficient, unsafe and easy-to-miss manual inspections. An improved logarithmic transformation method was developed in data pre-processing to display tree features in the shadows. For the model structure, the original CSPDarkNet-53 backbone feature extraction network was replaced by MobileNetV3. Some of the standard convolutional blocks in the original extraction network were replaced by depthwise separable convolution blocks. The new ReLU6 activation function replaced the original LeakyReLU activation function to make the network more robust for low-precision computations. The K-means++ clustering method was also integrated to generate anchor boxes that are more suitable for the dataset. The experimental results show that the improved algorithm achieved an accuracy of 97.33%, higher than other methods. The detection speed of the proposed approach is higher than that of YOLOv4, improving the efficiency and accuracy of the detection process.
Cracks are an important distress of concrete bridges, and may reduce the life and safety of bridges. However, the traditional manual crack detection means highly depend on the experience of inspectors. Furthermore, it is time-consuming, expensive, and often unsafe when inaccessible position of bridge is to be assessed, such as viaduct pier. To solve this question, the real-time automatic crack detecting system with unmanned aerial vehicle (UAV) become a choice. This paper designs a new automatic detection system based on real-time comprehensive image processing for bridge crack. It has small size, light weight, low power consumption and can be carried on a small UAV for real-time data acquisition and processing. The real-time comprehensive image processing algorithm used in this detection system combines the advantage of connected domain area, shape extremum, morphology and support vector data description (SVDD). The performance and validity of the proposed algorithm and system are verified. Compared with other detection method, the proposed system can effectively detect cracks with high detection accuracy and high speed. The designed system in this paper is suitable for practical engineering applications.
In recent years, a study of power-line inspection using an unmanned aerial vehicle (UAV) has been actively conducted. However, relevant studies have been conducting power-line inspection with an UAV operated by manual control, and they have developed just power-line detection algorithm on aerial images. To overcome limitations of existing research, we propose a drone-based power-line tracking system in this paper. The main contributions of this paper are to operate developed system under configured environment and to develop a power-line detection algorithm in real-time. Developed system is composed of the power-line detection and the image-based tracking control. To detect a power-line in real-time, a region of interest (ROI) image is extracted. Furthermore, clustering algorithm is used in order to discriminate the power-line from background. Finally, the power-line is detected by using the Hough transform, and a center position and a tilt angle are estimated by using the Kalman filter to control a drone smoothly. We design a position controller and an attitude controller for image-based tracking control, and both controllers are designed based on the proportional-derivative (PD) control method. The interaction between the position controller and the attitude controller makes the drone track the power-line. Several experiments were carried out in environments where conditions are similar to actual environments, which demonstrates the superiority of the developed system.
최근 영농분야에서 종자파종, 병충해 방제 등에 무인항공기(UAV ; Unmanned Aerial Vehicle)를 활용한 응용이 활발히 진행되고 있다. 본 연구는 UAV에 다양한 파장대의 영상센서를 탑재하고 SfM(Structure from Motion) 영상해석기법과 연계한'고해상 저고도 원격탐측시스템(UAS ; Unmanned Aerial System)'를 구성, UAS 기반 식생조사의 효용성을 고찰하여 정밀영농의 활용성을 검토하였다. 이를 위해 저가 UAV에 가시 컬러(VIS_RGB ; Visible Red, Green, and Blue) 영상센서, 수정된 BG_NIR(Blue Green_Near Infrared Red) 근적외 영상 센서, $7.5{\sim}13.5{\mu}m$ 분광대역의 열적외 영상(TIR ; Thermal Infrared Red)센서를 조합 연계한 UAS를 구성하였다. 또한, 가시 근적외 및 열적외 파장대를 기본요소로 광합성에 따른 식물의 엽록소, 질소 및 수분 함유량 등을 검토할 수 있는 총 10종의 식생지수를 선정, 식생상태 검출에 활용하였다. 시험대상지에 대한 각 파장대역의 영상을 획득하고 사전에 조사된 지상 피복현황을 기준으로 각 식생지수의 분포도 및 식생지수 간 상관성(결정계수 R2) 등을 비교 고찰하여 무인항공기를 활용한 가시 컬러, 근 적외 및 열 적외 영상에 의한 식생상태의 검측 수행능력을 검토하였다. 저가 무인항공기에 VIS_RGB, BG_NIR 및 TIR 영상 센서를 탑재, 식생조사의 효용성을 종합적으로 검토한 결과, 인공위성과 항공영상에 의존한 과거의 식생조사방식 대비, 영상해상도, 경제성 및 운용성 면에서 UAV기반 고해상 저고도 원격탐측시스템(UAS)의 효용성을 입증할 수 있었으므로 정밀농업, 수계 및 산림조사 등의 분야에 그 활용이 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.