Journal of The Korean Society of Agricultural Engineers
/
v.66
no.3
/
pp.1-14
/
2024
Gaining an accurate 3D stream geometry has become feasible with Unmanned Aerial Vehicle (UAV), which is crucial for better understanding stream hydrodynamic processes. The objective of this study was to investigate series of filters to remove stream vegetation and propose the best method for generating Digital Terrain Models (DTMs) using UAV-based point clouds. A stream reach approximately 500 m of the Bokha stream in Icheon city was selected as the study area. Point clouds were obtained in August 1st, 2023, using Phantom 4 multispectral and Zenmuse L1 for Structure from Motion (SfM) and Light Detection And Ranging (LiDAR) respectively. Three vegetation filters, two morphological filters, and six composite filters which combined vegetation and morphological filters were applied in this study. The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were used to assess each filters comparing with the two cross-sections measured by leveling survey. The vegetation filters performed better in SfM, especially for short vegetation areas, while the morphological filters demonstrated superior performance on LiDAR, particularly for taller vegetation areas. Overall, the composite filters combining advantages of two types of filters performed better than single filter application. The best method was the combination of Progressive TIN (PTIN) and Color Indicies of Vegetation Extraction (CIVE) for SfM, showing the smallest MAE of 0.169 m. The proposed method in this study can be utilized for constructing DTMs of stream and thus contribute to improving the accuracy of stream hydrodynamic simulations.
Jaekyeong Baek;Wan-Gyu Sang;Dongwon Kwon;Sungyul Chanag;Hyeojin Bak;Ho-young Ban;Jung-Il Cho
Proceedings of the Korean Society of Crop Science Conference
/
2022.10a
/
pp.88-88
/
2022
Detection of stress responses in crops is important to diagnose crop growth and evaluate yield. Also, the multi-spectral sensor is effectively known to evaluate stress caused by nutrient and moisture in crops or biological agents such as weeds or diseases. Therefore, in this experiment, multispectral images were taken by an unmanned aerial vehicle(UAV) under field condition. The experiment was conducted in the long-term fertilizer field in the National Institute of Crop Science, and experiment area was divided into different status of NPK(Control, N-deficiency, P-deficiency, K-deficiency, Non-fertilizer). Total 11 vegetation indices were created with RGB and NIR reflectance values using python. Variations in nutrient content in plants affect the amount of light reflected or absorbed for each wavelength band. Therefore, the objective of this experiment was to evaluate vegetation indices derived from multispectral reflectance data as input into machine learning algorithm for the classification of nutritional deficiency in rice. RandomForest model was used as a representative ensemble model, and parameters were adjusted through hyperparameter tuning such as RandomSearchCV. As a result, training accuracy was 0.95 and test accuracy was 0.80, and IPCA, NDRE, and EVI were included in the top three indices for feature importance. Also, precision, recall, and f1-score, which are indicators for evaluating the performance of the classification model, showed a distribution of 0.7-0.9 for each class.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.34
no.6
/
pp.559-568
/
2016
For the economic management of photovoltaic power plants, it is necessary to regularly monitor the panels within the plants to detect malfunctions. Thermal infrared image cameras are generally used for monitoring, since malfunctioning panels emit higher temperatures compared to those that are functioning. Recently, technologies that observe photovoltaic arrays by mounting thermal infrared cameras on UAVs (Unmanned Aerial Vehicle) are being developed for the efficient monitoring of large-scale photovoltaic power plants. However, the technologies developed until now have had the shortcomings of having to analyze the images manually to detect malfunctioning panels, which is time-consuming. In this paper, we propose an automatic photovoltaic panel area extraction algorithm for thermal infrared images acquired via a UAV. In the thermal infrared images, panel boundaries are presented as obvious linear features, and the panels are regularly arranged. Therefore, we exaggerate the linear features with a vertical and horizontal filtering algorithm, and apply a modified hierarchical histogram clustering method to extract candidates of panel boundaries. Among the candidates, initial panel areas are extracted by exclusion editing with the results of the photovoltaic array area detection. In this step, thresholding and image morphological algorithms are applied. Finally, panel areas are refined with the geometry of the surrounding panels. The accuracy of the results is evaluated quantitatively by manually digitized data, and a mean completeness of 95.0%, a mean correctness of 96.9%, and mean quality of 92.1 percent are obtained with the proposed algorithm.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.45
no.12
/
pp.1084-1093
/
2017
As the survivability of an aircraft in the battlefield becomes a critical issue, there is a growing need to improve the survivability of the aircraft. In this study, the survivability of an UCAV associated with plume IR signature was investigated. In order to analyze the survivability of the aircraft, the lock-on range and the lethal envelope, defined as the IR detection distance of the aircraft and the range of shooting down by the missile, respectively, were first introduced. Further, a method to calculate the lethal envelope for the scenario of surface-to-air missiles including the vertical plane was developed. The study confirmed that the red zone of an UCAV shows a substantial difference in the zone size as well as the characteristics in the upward and downward directions.
Bursaphelenchus xylophilus(Pine wilt disease) is a serious threat to the pine forest in Korea. However, dead wood observation by Pine wilt disease is based on field survey. Therefore, it is difficult to observe large-scale forests due to physical and economic problems. In this paper, high resolution images were obtained using the unmanned aerial vehicle (UAV) in the area where the pine wilt disease recurred. The damaged tree due to pine wilt disease was detected using Artificial Neural Network (ANN), Support Vector Machine (SVM) supervision classification technique. Also, the accuracy of supervised classification results was calculated. After conducting supervised classification on accessible forests, the reliability of the accuracy was verified by comparing the results of field surveys.
Proceedings of the Korean Society of Propulsion Engineers Conference
/
2006.11a
/
pp.281-284
/
2006
An intelligent performance diagnostic program using the Neural Network was proposed for PW206C turboshaft engine. It was selected as a power plant for the tilt rotor type Smart UAV (Unmanned Aerial Vehicle) which has been developed by KARI (Korea Aerospace Research Institute). The measurement parameters of Smart UAV propulsion system are gas generator rotational speed, power turbine rotational speed, exhaust gas temperature and torque. But two measurement such as compressor exit pressure and compressor turbine exit temperature were added because they were difficult each component diagnostics using the default measurement parameter. The performance parameters for the estimate of component performance degradation degree are flow capacities and efficiencies for compressor, compressor turbine and power turbine. Database for network learning and test was constructed using a gas turbine performance simulation program. From application results for diagnostics of the PW206C turboshaft engine using the learned networks, it was confirmed that the proposed diagnostics could detect well the single fault types such as compressor fouling and compressor turbine erosion.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.7
/
pp.211-217
/
2019
In an complicated battlefield environment, information from enemy's camp is an important factor in carrying out military operations. For obtaining this information, the number of UAVs that can be deployed to the mission without our forces' loss and at low cost is increasing. Because the mission environment has anti-aircraft weapons, mission space is needed for UAV to guarantee survivability without being killed. The concept of Configuration Space is used to define the mission space considering with range of weapons and detect range of UAV. UAV must visit whole given area to obtain the information and perform Coverage Path Planning for this. Based on threats to UAV and importance of information that will be obtained, area that UAV should visit first is defined. Grid Map is generated and mapping threat information to each grid for UAV path planning. On this study, coverage conditions and path planning procedures are presented based on the threat information on Grid Map, and mission space is expanded to improve detection efficiency. Finally, simulations are performed, and results are presented using the suggested UAV path planning method in this study.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.445-445
/
2022
최근 새만금 방조제 건설이 완료됨에 따라 주변 연안지역의 지형에 많은 변화가 감지되었다. 본 연구대상지는 격포해수욕장으로서 새만금 사업 준공 후 연안침식에 따른 모래 유실 등으로 인해 양빈사업 등이 검토되고 있는 상황이다. 본 연구에서는 연안지형 변화 탐지를 위한 UAV (Unmanned Aerial Vehicle) 활용기술을 제시하는 것으로서 총 3회에 걸쳐 UAV 영상을 촬영하였다. 영상촬영은 DJI Inspire 2 UAV를 활용하였으며 VRS(Virtual Reference Service) 측량성과와 연계하여 Pix4D Mapper SW를 통해 정사영상과 수치표면모델(DSM; Digital Surface Model)을 제작하였다. 먼저 2018. 6. 29 ~ 2018. 12. 10 사이의 지형변화 탐지를 수행한 결과 침식과 퇴적의 최대값은 각각 2.56m와 2.24m로 나타났으며 평균적으로는 0.01m의 퇴적이 발생하였다. 그리고 2018. 6. 29 ~ 2019. 6. 14 동안의 침식과 퇴적의 최대값은 각각 2.31m와 2.28m로 나타났으며 평균값은 0.02m의 침식이 발생하였다. 또한 2018. 12. 10 ~ 2019. 6. 14 사이에는 침식과 퇴적의 최대값이 각각 2.28m와 2.55m로 나타났으며 평균값은 0.03m의 침식이 발생하였다. 지형변화를 보다 상세히 모니터링하고자 퇴적과 침식구간을 나누어 분석을 수행한 결과, 2018. 6. 29 ~ 2018. 12. 10 사이에는 0.5m 이내의 침식과 퇴적구간 면적이 각각 13,324.4m2와 14,667.3m2로 퇴적구간의 면적이 1,342.9m2 만큼 높게 나타났으며, 2018. 12. 10 ~ 2019. 6. 14 사이에는 0.5m 이내의 침식과 퇴적구간 면적이 각각 16,176.6m2와 11,723.0m2로 침식구간의 면적이 4,453m2 만큼 높게 나타났다. 또한 2018. 12. 10 ~ 2019. 6. 14 사이에는 0.5m 이내의 침식과 퇴적구간 면적이 각각 16,821.6m2와 11,126.4m2로 침식구간의 면적이 5,695.2m2 만큼 크게 분석되었다. 이와 같이 UAV 영상 기반의 연안지형 모니터링을 수행할 경우 시계열 지형변화를 효과적으로 모니터링할 수 있으며, 이러한 업무는 새만금 방조제 건설에 따른 지형변화의 영향평가 등 다양한 연안업무에 활용될 수 있을 것이다.
The fact that the demands on traffic data collection are imposed by economic and safety considerations raisese the question of the potential for complementing existing traffic data collection programs with satellite data. Evaluating and monitoring traffic characteristics is becoming increasingly important as worsening congestion, declining economic situations, and increasing environmental sensitivies are forcing the government and municipalities to make better use of existing roadway capacities. The present system of using automatic counters at selected points on highways works well from a temporal point of view (i.e., during a specific period of time at one location). However, the present system does not cover the spatial aspects of the entire road system (i.e., for every location during specific periods of time); the counters are employed only at points and only on selected highways. This lack of spatial coverage is due, in part, to the cost of the automatic counters systems (fixed procurement and maintenance costs) and of the personal required to deploy them. The current procedure is believed to work fairly well in the aggregate mode, at the macro level. However, at micro level, the numbers are more suspect. In addition, the statistics only work when assuming a certain homogenity among characteristics of highways in the same class, an assumption that is impossible to test whn little or no data is gathered on many of the highways for a given class. In this paper, a remote sensing system as complement of the existing system is considered and implemented. Since satellite imagery with high resolution is not available, digitized panchromatic imagery acquired from an aircraft platform is utilized for initial test of the feasibility and performance capability of remote sensing data. Different levels of imagery resolutions are evaluated in an attempt to determine what vehicle types could be classified and counted against a background of pavement types, which might be expected in panchromatic satellite imagery. The results of a systematic study with three different levels of resolutions (1m, 2m and 4m) show that the panchromat ic reflectances of vehicles and pavements would be distributed so similarly that it would be difficult to classify systematically and analytically remotely sensing vehicles on pavement within panchromatic range. Anaysis of the aerial photographs show that the shadows of the vehicles could be a cue for vehicle detection.
Kim, Seongsam;Park, Jesung;Shin, Dongyoon;Yoo, Suhong;Sohn, Hong-Gyoo
Korean Journal of Remote Sensing
/
v.35
no.5_2
/
pp.841-850
/
2019
The purpose of this study is to strengthen the capability of rapid mapping for disaster through improving the positioning accuracy of mapping and fusion of multi-sensing point cloud data derived from Unmanned Aerial Vehicles (UAVs) and disaster investigation vehicle. The positioning accuracy was evaluated for two procedures of drone mapping with Agisoft PhotoScan: 1) general geo-referencing by self-calibration, 2) proposed geo-referencing with optimized camera model by using fixed accurate Interior Orientation Parameters (IOPs) derived from indoor camera calibration test and bundle adjustment. The analysis result of positioning accuracy showed that positioning RMS error was improved 2~3 m to 0.11~0.28 m in horizontal and 2.85 m to 0.45 m in vertical accuracy, respectively. In addition, proposed data fusion approach of multi-sensing point cloud with the constraints of the height showed that the point matching error was greatly reduced under about 0.07 m. Accordingly, our proposed data fusion approach will enable us to generate effectively and timelinessly ortho-imagery and high-resolution three dimensional geographic data for national disaster management in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.