• Title/Summary/Keyword: Detection electrode

Search Result 566, Processing Time 0.023 seconds

Detection of Trace Copper Metal at Carbon Nanotube Based Electrodes Using Squarewave Anodic Stripping Voltammetry

  • Choi, Changkun;Jeong, Youngsam;Kwon, Yongchai
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.801-809
    • /
    • 2013
  • We investigate sensitivity and limit of detection (LOD) of trace copper (Cu) metal using pristine carbon nanotube (CNT) and acidified CNT (ACNT) electrodes. Squarewave based anodic stripping voltammetry (SWASV) is used to determine the stripped Cu concentration. Prior to performing the SWASV measurements, its optimal conditions are determined and with that, effects of potential scan rate and $Cu^{2+}$ concentration on stripping current are evaluated. The measurements indicate that (1) ACNT electrode shows better results than CNT electrode and (2) stripping is controlled by surface reaction. In the given $Cu^{2+}$ concentration range of 25-150 ppb, peak stripping current has linearity with $Cu^{2+}$ concentration. Quantitatively, sensitivity and LOD of Cu in ACNT electrode are 9.36 ${\mu}A\;{\mu}M^{-1}$ and 3 ppb, while their values are 3.99 ${\mu}A\;{\mu}M^{-1}$ and 3 ppb with CNT electrode. We evaluate the effect of three different water solutions (deionized water, tap water and river water) on stripping current and the confirm types of water don't affect the sensitivity of Cu. It turns out by optical inspection and cyclic voltammetry that superiority of ACNT electrode to CNT electrode is attributed to exfoliation of CNT bundles and improved interfacial adhesion occurring during oxidation of CNTs.

The Polymer Membrane Electrode by Surfactants for Measuring Continuously Thiocyanate Ion in Wastewater (폐수중 티오시안산이온을 측정하기 위한 계면활성제를 이용한 고분자 막전극)

  • 최종석;안형환;강안수;우인성;황명환
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.4
    • /
    • pp.13-20
    • /
    • 1991
  • Ion-selective electrode responsive to the thiocynate ion prepared by using the quaternary ammonium salts as a active material and PVC as a membrane matrix. The effect of chemical structure and composition of active material, and the membrane thickness on the linear response. the detection limit, and Nernstian slope of the electrode studied. Under the above optimum conditions of membrane, the effect of pH and the selectivity coefficients to various interfering anions were compared and investigated. It was concluded that the functions of thiocynate ion-selective electrode(ISE) were closely related to the chemical structure of the quaternary ammonium salts. The linear response, and the detection limit of the electrode potential increased with the increase of the carbon chain length of the alkyl group in the quaternary ammonium salts in the ascending order of Aliquat 336T, TOAT, TDAT, and TDDAT. The optimum membrane thickness was 0.3mm. The electrode characteristics was better with the decrease of the concentration of active material, and the best concentration was 3 weight percent. The membrane potential was independent of the pH variation in the region from pH 2 to 12. The order of the selectivity coefficients is as follows:Cl $O_4$$^{[-10]}$$I^{[-10]}$ >N $O_3$$^{[-10]}$ >B $r^{[-10]}$$F^{[-10]}$ >C $l^{[-10]}$ >O $A_{c}$ $^{[-10]}$ 〓S $O_4$$^{2-}$.

  • PDF

Preparation and Characterization of a Surface Renewable Solid State Hg/HgO Reference Electrode Utilizing Gold Amalgam

  • Kim, Won;Park, Jong-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.439-442
    • /
    • 2007
  • A solid state Hg(Au)/HgO reference electrode was prepared utilizing gold amalgam solid particles. Solid fine powder of the gold amalgam was prepared by chemical reduction of Au(III) with NaBH4 followed by reduction of Hg(II) in the presence of gold fine particles. The solid content in the suspension of the gold amalgam particles and fine mercury oxide particles in DMF containing PVC was precipitated by the addition of a large amount of water to give solid Hg(Au)/HgO/PVC mixture. After drying, the mixture was pressure-molded to a physically stable Hg(Au)/HgO composite reference electrode material. The electrochemical characteristics of the electrode as a reference electrode were very similar to an ordinary Hg/HgO reference electrode. The electrode material can be molded and fabricated in any desired shape and size. The surface can be renewed by a simple polishing process whenever contaminated or deactivated. The applicability of the electrode in the electrochemical detection of carbohydrates after anion exchange separation was evaluated.

A Non-contact Detection Method for Smelting in Submerged Arc Furnace based on Magnetic Field Radiation

  • Liu, WeiLing;Chang, XiaoMing
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.204-208
    • /
    • 2016
  • This paper demonstrates the key parameter detection for smelting of submerged arc furnace (SAF) based on magnetic field radiation. A magnetic field radiation model for the inner structure of SAF is established based on relative theory of electromagnetic field. A simple equipment of 3D magnetic field detection system is developed by theoretical derivation and simulation. The experiments are carried out under the environment of industrial field and AC magnetic field generated by electrode currents and molten currents in the furnace is reflected outside of the furnace. The experimental results show that the key parameters of smelting including the position of electrode tip, the length of electric arc, and the liquid level of molten bath can be achieved. The computed tomography for SAF can be realized by the detection for smelting.

Flow Injective Determination of Thiourea by Amperometry

  • Lee Joon-Woo;Mho Sun-Il;Pyun Chong Hong;Yeo In-Hyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1038-1042
    • /
    • 1994
  • The amperometric responses of thiourea were studied in 0.1 M NaOH by flow injection analysis. D. C. amperometric and pulsed amperometric detection methods were applied for the determination of thiourea at novel metal electrodes such as Pt and Au. Triple-step potential waveforms were adopted in the pulsed amperometric detection. With an optimized pulsed waveform, the current for the oxidation of thiourea was examined with the variation of flow rate of carrier solution and with the change in the amount of sample injected. Gold working electrode turned out to be better in sensitivity and signal to noise ratio than Pt electrode in the pulsed amperometric detection of thiourea. Detection limit is estimated to be 5.33 ${\times}$ 10$^{-5}$ M with this detection method.

Disposable Microchip-Based Electrochemical Detector Using Polydimethylsiloxane Channel and Indium Tin Oxide Electrode (Polydimethylsiloxane 채널과 indium tin oxide 전극을 이용한 일회용 전기화학적 검출 시스템)

  • Yi In-Je;Kang Chi-Jung;Kim Yong-Sang;Kim Ju-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.227-231
    • /
    • 2005
  • We have developed a microsystem with a capillary electrophoresis (CE) and an electrochemical detector (ECD). The microfabricated CE-ECD systems are adequate for a disposable type and the characteristics are optimized for an application to the electrochemical detection. The system was realized with polydimethylsiloxane (PDMS)-glass chip and indium tin oxide electrode. The injection and separation channels (80 um wide$\ast$40 um deep) were produced by moulding a PDMS against a microfabricated master with relatively simple and inexpensive methods. A CE-ECD systems were fabricated on the same substrate with the same fabrication procedure. The surface of PDMS layer and ITO-coated glass layer was treated with UV-Ozone to improve bonding strength and to enhance the effect of electroosmotic flow. For comparing the performance of the ITO electrodes with the gold electrodes, gold electrode microchip was fabricated with the same dimension. The running buffer was prepared by 10 mM 2-(N-morpholino)ethanesulfonic acid (MES) titrated to PH 6.5 using 0.1 N NaOH. We measured olectropherograms for the testing analytes consisted of catechol and dopamine with the different concentrations of 1 mM and 0.1 mM, respectively. The measured current peaks of dopamine and catechol are proportional to their concentrations. For comparing the performance of the ITO electrodes with the gold electrodes, electropherograms was measured for CE-ECD device with gold electrodes under the same conditions. Except for the base current level, the performances including sensitivity, stability, and resolution of CE-ECD microchip with ITO electrode are almost the same compared with gold electrode CE-ECD device. The disposable CE/ECD system showed similar results with the previously reported expensive system in the limit of detection and peak skew. When we are using disposable microchips, it is possible to avoid polishing electrode and reconditioning.

Simultaneous Determination of Ranitidine and Metronidazole at Poly(thionine) Modified Anodized Glassy Carbon Electrode

  • Rahman, Md. Mahbubur;Li, Xiao-Bo;Jeon, Young-Deok;Lee, Ho-Joon;Lee, Soo Jae;Lee, Jae-Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.90-94
    • /
    • 2012
  • A simple and sensitive electrochemical sensor for simultaneous and quantitative detection of ranitidine (RT) and metronidazole (MT) was developed, based on a poly(thionine)-modified anodized glassy carbon electrode (PTH/GCE). The modified electrode showed the excellent electrocatalytic activity towards the reduction of both RT and MT in 0.1M phosphate buffer solution (PBS, pH 7.0). The peak-to-peak separations (${\Delta}E_p$) for the simultaneous detection of RT and MT between the two reduction waves in CV and DPV were increased significantly from ca. 100 mV at anodized GCE, to ca. 550 mV at the PTH/GCE. The reduction peak currents of RT and MT were linear over the range from 35 to $500{\mu}M$ in the presence of 200 and $150{\mu}M$ of RT and MT, respectively. The sensor showed the sensitivity of 0.58 and $0.78{\mu}A/cm^2/{\mu}M$ with the detection limits (S/N = 3) of 1.5 and $0.96{\mu}M$, respectively for RT and MT.

Rapid Detection of Salmonella enteritidis in Pork Samples with Impedimetric Biosensor: Effect of Electrode Spacing on Sensitivity

  • Kim, Gi-Young;Moon, Ji-Hea;Hahm, Bung-Kwon;Morgan, Mark;Bhunia, Arun;Om, Ae-Son
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.89-94
    • /
    • 2009
  • Frequent outbreaks of foodborne illness have been increasing the awareness of food safety. Conventional methods for pathogen detection and identification are labor-intensive and take days to complete. Some immunological, rapid assays are developed, but these assays still require prolonged enrichment steps. Recently developed biosensors have shown potential for the rapid detection of foodborne pathogens. In this study, an impedimetric biosensor was developed for rapid detection of Salmonella entritidis in food sample. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using a semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on neutravidin-biotin binding on the surface of the IME to form an active sensing layer. To evaluate the effect of electrode gap on sensitivity of the sensor, 3 types of sensors with different electrode gap sizes (2, 5, and $10{\mu}m$) were fabricated and tested. The impedimetric biosensor could detect $10^3\;CFU/mL$ of Salmonella in pork meat extract with an incubation time of 5 min. This method may provide a simple, rapid, and sensitive method to detect foodborne pathogens.

A New Selective Membrane Electrode for Oxalate Based on N,N'-Bis(salicylidene)-2,2-dimethylpropane-1,3-diamine Ni(II)

  • Ardakani, M.Mazloum;Iranpoor, F.;Karimi, M.A.;Salavati-Niasari, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.398-404
    • /
    • 2008
  • A new solvent polymeric membrane electrode, based on N,N'-bis(salicylidene)-2,2-dimethylpropane-1,3-diamine Ni(II) as the ionophore, was designed. The oxalate-selective electrode has the dynamic range between 1.0 10-6 M and 1.0 10-1 M with a Nernstian slope of -28.7 1.0 mV per decade. The detection limit was 6.3 10-7 M. The proposed electrode revealed good selectivities for oxalate over a variety of other anions and could be used in a pH range of 2.0-7.8. The electrode can be used for at least two months without any considerable divergence in potential. The designed electrode was applied as an indicator electrode in the potentiometric determination of oxalate in real samples.