• Title/Summary/Keyword: Detection efficiency

Search Result 1,781, Processing Time 0.025 seconds

Artificial Neural Network with Firefly Algorithm-Based Collaborative Spectrum Sensing in Cognitive Radio Networks

  • Velmurugan., S;P. Ezhumalai;E.A. Mary Anita
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1951-1975
    • /
    • 2023
  • Recent advances in Cognitive Radio Networks (CRN) have elevated them to the status of a critical instrument for overcoming spectrum limits and achieving severe future wireless communication requirements. Collaborative spectrum sensing is presented for efficient channel selection because spectrum sensing is an essential part of CRNs. This study presents an innovative cooperative spectrum sensing (CSS) model that is built on the Firefly Algorithm (FA), as well as machine learning artificial neural networks (ANN). This system makes use of user grouping strategies to improve detection performance dramatically while lowering collaboration costs. Cooperative sensing wasn't used until after cognitive radio users had been correctly identified using energy data samples and an ANN model. Cooperative sensing strategies produce a user base that is either secure, requires less effort, or is faultless. The suggested method's purpose is to choose the best transmission channel. Clustering is utilized by the suggested ANN-FA model to reduce spectrum sensing inaccuracy. The transmission channel that has the highest weight is chosen by employing the method that has been provided for computing channel weight. The proposed ANN-FA model computes channel weight based on three sets of input parameters: PU utilization, CR count, and channel capacity. Using an improved evolutionary algorithm, the key principles of the ANN-FA scheme are optimized to boost the overall efficiency of the CRN channel selection technique. This study proposes the Artificial Neural Network with Firefly Algorithm (ANN-FA) for cognitive radio networks to overcome the obstacles. This proposed work focuses primarily on sensing the optimal secondary user channel and reducing the spectrum handoff delay in wireless networks. Several benchmark functions are utilized We analyze the efficacy of this innovative strategy by evaluating its performance. The performance of ANN-FA is 22.72 percent more robust and effective than that of the other metaheuristic algorithm, according to experimental findings. The proposed ANN-FA model is simulated using the NS2 simulator, The results are evaluated in terms of average interference ratio, spectrum opportunity utilization, three metrics are measured: packet delivery ratio (PDR), end-to-end delay, and end-to-average throughput for a variety of different CRs found in the network.

Analysis of Infiltration Route using Optimal Path Finding Methods and Geospatial Information (지형공간정보 및 최적탐색기법을 이용한 최적침투경로 분석)

  • Bang, Soo Nam;Heo, Joon;Sohn, Hong Gyoo;Lee, Yong Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.195-202
    • /
    • 2006
  • The infiltration route analysis is a military application using geospatial information technology. The result of the analysis would present vulnerable routes for potential enemy infiltration. In order to find the susceptible routes, optimal path search algorithms (Dijkstra's and $A^*$) were used to minimize the cost function, summation of detection probability. The cost function was produced by capability of TOD (Thermal Observation Device), results of viewshed analysis using DEM (Digital Elevation Model) and two related geospatial information coverages (obstacle and vegetation) extracted from VITD (Vector product Interim Terrain Data). With respect to 50m by 50m cells, the individual cost was computed and recorded, and then the optimal infiltration routes was found while minimizing summation of the costs on the routes. The proposed algorithm was experimented in Daejeon region in South Korea. The test results show that Dijkstra's and $A^*$ algorithms do not present significant differences, but A* algorithm shows a better efficiency. This application can be used for both infiltration and surveillance. Using simulation of moving TOD, the most vulnerable routes can be detected for infiltration purpose. On the other hands, it can be inversely used for selection of the best locations of TOD. This is an example of powerful geospatial solution for military application.

Design of a designated lane enforcement system based on deep learning (딥러닝 기반 지정차로제 단속 시스템 설계)

  • Bae, Ga-hyeong;Jang, Jong-wook;Jang, Sung-jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.236-238
    • /
    • 2022
  • According to the current Road Traffic Act, the 2020 amendment bill is currently in effect as a system that designates vehicle types for each lane for the purpose of securing road use efficiency and traffic safety. When comparing the number of traffic accident fatalities per 10,000 vehicles in Germany and Korea, the number of traffic accident deaths in Germany is significantly lower than in Korea. The representative case of the German autobahn, which did not impose a speed limit, suggests that Korea's speeding laws are not the only answer to reducing the accident rate. The designated lane system, which is observed in accordance with the keep right principle of the Autobahn Expressway, plays a major role in reducing traffic accidents. Based on this fact, we propose a traffic enforcement system to crack down on vehicles violating the designated lane system and improve the compliance rate. We develop a designated lane enforcement system that recognizes vehicle types using Yolo5, a deep learning object recognition model, recognizes license plates and lanes using OpenCV, and stores the extracted data in the server to determine whether or not laws are violated.Accordingly, it is expected that there will be an effect of reducing the traffic accident rate through the improvement of driver's awareness and compliance rate.

  • PDF

Transfer Learning based DNN-SVM Hybrid Model for Breast Cancer Classification

  • Gui Rae Jo;Beomsu Baek;Young Soon Kim;Dong Hoon Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.1-11
    • /
    • 2023
  • Breast cancer is the disease that affects women the most worldwide. Due to the development of computer technology, the efficiency of machine learning has increased, and thus plays an important role in cancer detection and diagnosis. Deep learning is a field of machine learning technology based on an artificial neural network, and its performance has been rapidly improved in recent years, and its application range is expanding. In this paper, we propose a DNN-SVM hybrid model that combines the structure of a deep neural network (DNN) based on transfer learning and a support vector machine (SVM) for breast cancer classification. The transfer learning-based proposed model is effective for small training data, has a fast learning speed, and can improve model performance by combining all the advantages of a single model, that is, DNN and SVM. To evaluate the performance of the proposed DNN-SVM Hybrid model, the performance test results with WOBC and WDBC breast cancer data provided by the UCI machine learning repository showed that the proposed model is superior to single models such as logistic regression, DNN, and SVM, and ensemble models such as random forest in various performance measures.

Concrete Crack Detection Inside Finishing Materials Using Lock-in Thermography (위상 잠금 열화상 기법을 이용한 콘크리트 마감재 내부 균열 검출)

  • Myung-Hun Lee;Ukyong Woo;Hajin Choi;Jong-Chan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.30-38
    • /
    • 2023
  • As the number of old buildings subject to safety inspection increases, the burden on designated institutions and management entities that are responsible for safety management is increasing. Accordingly, when selecting buildings subject to safety inspection, appropriate safety inspection standards and appropriate technology are essential. The current safety inspection standards for old buildings give low scores when it is difficult to confirm damage such as cracks in structural members due to finishing materials. This causes the evaluation results to be underestimated regardless of the actual safety status of the structure, resulting in an increase in the number of aging buildings subject to safety inspection. Accordingly, this study proposed a thermal imaging technique, a non-destructive and non-contact inspection, to detect cracks inside finishing materials. A concrete specimen was produced to observe cracks inside the finishing material using a thermal imaging camera, and thermal image data was measured by exciting a heat source on the concrete surface and cracked area. As a result of the measurement, it was confirmed that it was possible to observe cracks inside the finishing material with a width of 0.3mm, 0.5mm, and 0.7mm, but it was difficult to determine the cracks due to uneven temperature distribution due to surface peeling and peeling of the wallpaper. Accordingly, as a result of performing data analysis by deriving the amplitude and phase difference of the thermal image data, clear crack measurement was possible for 0.5mm and 0.7mm cracks. Based on this study, we hope to increase the efficiency of field application and analysis through the development of technology using big data-based deep learning in the diagnosis of internal crack damage in finishing materials.

Mechanical Properties of Fiber-reinforced Cement Composites according to a Multi-walled Carbon Nanotube Dispersion Method (다중벽 탄소나노튜브의 분산방법에 따른 섬유보강 시멘트복합체의 역학적 특성)

  • Kim, Moon-Kyu;Kim, Gyu-Yong;Pyeon, Su-Jeong;Choi, Byung-Cheol;Lee, Yae-Chan;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.203-213
    • /
    • 2024
  • This study delves into the mechanical properties of fiber-reinforced cement composites(FRCC) concerning the dispersion method of multi-walled carbon nanotubes(MWCNTs). MWCNTs find utility in industrial applications, particularly in magnetic sensing and crack detection, owing to their diverse properties including heat resistance and chemical stability. However, current research endeavors are increasingly directed towards leveraging the electrical properties of MWCNTs for self-sensing and smart sensor development. Notably, achieving uniform dispersion of MWCNTs poses a challenge due to variations in researchers' skills and equipment, with excessive dispersion potentially leading to deterioration in mechanical performance. To address these challenges, this study employs ultrasonic dispersion for a defined duration along with PCE surfactant, known for its efficacy in dispersion. Test specimens of FRCC are prepared and subjected to strength, drawing, and direct tensile tests to evaluate their mechanical properties. Additionally, the influence of MWCNT dispersion efficiency on the enhancement of FRCC mechanical performance is scrutinized across different dispersion methods.

A Study on Multi-Object Data Split Technique for Deep Learning Model Efficiency (딥러닝 효율화를 위한 다중 객체 데이터 분할 학습 기법)

  • Jong-Ho Na;Jun-Ho Gong;Hyu-Soung Shin;Il-Dong Yun
    • Tunnel and Underground Space
    • /
    • v.34 no.3
    • /
    • pp.218-230
    • /
    • 2024
  • Recently, many studies have been conducted for safety management in construction sites by incorporating computer vision. Anchor box parameters are used in state-of-the-art deep learning-based object detection and segmentation, and the optimized parameters are critical in the training process to ensure consistent accuracy. Those parameters are generally tuned by fixing the shape and size by the user's heuristic method, and a single parameter controls the training rate in the model. However, the anchor box parameters are sensitive depending on the type of object and the size of the object, and as the number of training data increases. There is a limit to reflecting all the characteristics of the training data with a single parameter. Therefore, this paper suggests a method of applying multiple parameters optimized through data split to solve the above-mentioned problem. Criteria for efficiently segmenting integrated training data according to object size, number of objects, and shape of objects were established, and the effectiveness of the proposed data split method was verified through a comparative study of conventional scheme and proposed methods.

Spatiotemporal Monitoring of Soybean Growth and Water Status Using Drone-Based Shortwave Infrared (SWIR) Imagery (드론 기반 단파적외(SWIR) 영상을 활용한 콩의 생장과 수분 변화 모니터링)

  • Inji Lee;Heung-Min Kim;Youngmin Kim;Hoyong Ahn;Jae-Hyun Ryu;Hoejeong Jeong;Hyun-Dong Moon;Jaeil Cho;Seon-Woong Jang
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.275-284
    • /
    • 2024
  • Monitoring crop growth changes and water content is crucial in the agricultural sector. This study utilized drones equipped with Short Wavelength Infrared (SWIR) sensors, sensitive to moisture changes, to observe soybeans' growth and water content variations. We confirmed that as soybeans grow more vigorously, their water content increases and differences in irrigation levels lead to decreases in vegetation and moisture indices. This suggests that waterlogging slows down soybean growth and reduces water content, highlighting the importance of detailed monitoring of vegetation and moisture indices at different growth stages to enhance crop productivity and minimize damage from waterlogging. Such monitoring could also preemptively detect and prevent the adverse effects of moisture changes, such as droughts, on crop growth. By demonstrating the potential for early diagnosis of moisture stress using drone-based SWIR sensors, this research suggests improvements in the efficiency of large-scale crop management and increases in yield, contributing to agricultural production.

Improving the Performance of Radiologists Using Artificial Intelligence-Based Detection Support Software for Mammography: A Multi-Reader Study

  • Jeong Hoon Lee;Ki Hwan Kim;Eun Hye Lee;Jong Seok Ahn;Jung Kyu Ryu;Young Mi Park;Gi Won Shin;Young Joong Kim;Hye Young Choi
    • Korean Journal of Radiology
    • /
    • v.23 no.5
    • /
    • pp.505-516
    • /
    • 2022
  • Objective: To evaluate whether artificial intelligence (AI) for detecting breast cancer on mammography can improve the performance and time efficiency of radiologists reading mammograms. Materials and Methods: A commercial deep learning-based software for mammography was validated using external data collected from 200 patients, 100 each with and without breast cancer (40 with benign lesions and 60 without lesions) from one hospital. Ten readers, including five breast specialist radiologists (BSRs) and five general radiologists (GRs), assessed all mammography images using a seven-point scale to rate the likelihood of malignancy in two sessions, with and without the aid of the AI-based software, and the reading time was automatically recorded using a web-based reporting system. Two reading sessions were conducted with a two-month washout period in between. Differences in the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, and reading time between reading with and without AI were analyzed, accounting for data clustering by readers when indicated. Results: The AUROC of the AI alone, BSR (average across five readers), and GR (average across five readers) groups was 0.915 (95% confidence interval, 0.876-0.954), 0.813 (0.756-0.870), and 0.684 (0.616-0.752), respectively. With AI assistance, the AUROC significantly increased to 0.884 (0.840-0.928) and 0.833 (0.779-0.887) in the BSR and GR groups, respectively (p = 0.007 and p < 0.001, respectively). Sensitivity was improved by AI assistance in both groups (74.6% vs. 88.6% in BSR, p < 0.001; 52.1% vs. 79.4% in GR, p < 0.001), but the specificity did not differ significantly (66.6% vs. 66.4% in BSR, p = 0.238; 70.8% vs. 70.0% in GR, p = 0.689). The average reading time pooled across readers was significantly decreased by AI assistance for BSRs (82.73 vs. 73.04 seconds, p < 0.001) but increased in GRs (35.44 vs. 42.52 seconds, p < 0.001). Conclusion: AI-based software improved the performance of radiologists regardless of their experience and affected the reading time.

A Study on Establishment of Drone-Based Coastal Debris Monitoring Standards Using Meta-Analysis (메타분석을 적용한 드론 기반 해안 쓰레기 모니터링 기준 마련에 관한 연구)

  • Bo-Ram KIM;Hyun-Woo CHOI;Chol-Young LEE;Tae-Hoon KIM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.1
    • /
    • pp.99-114
    • /
    • 2024
  • Domestic coastal debris monitoring encounters challenges due to labor-intensive methods and limited survey scope. Consequently, research is utilizing remote sensing techniques to enhance efficiency in data collection. However, standards for domestic remote sensing based monitoring methods remain insufficient. In this study, we conducted a meta-analysis of 19 coastal debris monitoring studies utilizing drones and other remote sensing devices. We analyzed data collection methods, collected data information, monitoring target details, monitoring status, detection targets, and utilization models. Based on our meta-analysis results, we proposed monitoring criteria, recommended items, and performance standards for monitoring coastal debris using drones. Our findings define necessary conditions and standards for establishing operational guidelines for coastal debris monitoring using drones. Furthermore, we anticipate that incorporating foreign case analyses and field application results will enable the development of national-level guidelines for coastal debris monitoring utilizing remote sensing devices.