• Title/Summary/Keyword: Detection Technologies

Search Result 852, Processing Time 0.033 seconds

A Study on Unknown Malware Detection using Digital Forensic Techniques (디지털 포렌식 기법을 활용한 알려지지 않은 악성코드 탐지에 관한 연구)

  • Lee, Jaeho;Lee, Sangjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.1
    • /
    • pp.107-122
    • /
    • 2014
  • The DDoS attacks and the APT attacks occurred by the zombie computers simultaneously attack target systems at a fixed time, caused social confusion. These attacks require many zombie computers running attacker's commands, and unknown malware that can bypass detecion of the anti-virus products is being executed in those computers. A that time, many methods have been proposed for the detection of unknown malware against the anti-virus products that are detected using the signature. This paper proposes a method of unknown malware detection using digital forensic techniques and describes the results of experiments carried out on various samples of malware and normal files.

Using machine learning for anomaly detection on a system-on-chip under gamma radiation

  • Eduardo Weber Wachter ;Server Kasap ;Sefki Kolozali ;Xiaojun Zhai ;Shoaib Ehsan;Klaus D. McDonald-Maier
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.3985-3995
    • /
    • 2022
  • The emergence of new nanoscale technologies has imposed significant challenges to designing reliable electronic systems in radiation environments. A few types of radiation like Total Ionizing Dose (TID) can cause permanent damages on such nanoscale electronic devices, and current state-of-the-art technologies to tackle TID make use of expensive radiation-hardened devices. This paper focuses on a novel and different approach: using machine learning algorithms on consumer electronic level Field Programmable Gate Arrays (FPGAs) to tackle TID effects and monitor them to replace before they stop working. This condition has a research challenge to anticipate when the board results in a total failure due to TID effects. We observed internal measurements of FPGA boards under gamma radiation and used three different anomaly detection machine learning (ML) algorithms to detect anomalies in the sensor measurements in a gamma-radiated environment. The statistical results show a highly significant relationship between the gamma radiation exposure levels and the board measurements. Moreover, our anomaly detection results have shown that a One-Class SVM with Radial Basis Function Kernel has an average recall score of 0.95. Also, all anomalies can be detected before the boards are entirely inoperative, i.e. voltages drop to zero and confirmed with a sanity check.

Genetic Algorithm based hyperparameter tuned CNN for identifying IoT intrusions

  • Alexander. R;Pradeep Mohan Kumar. K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.755-778
    • /
    • 2024
  • In recent years, the number of devices being connected to the internet has grown enormously, as has the intrusive behavior in the network. Thus, it is important for intrusion detection systems to report all intrusive behavior. Using deep learning and machine learning algorithms, intrusion detection systems are able to perform well in identifying attacks. However, the concern with these deep learning algorithms is their inability to identify a suitable network based on traffic volume, which requires manual changing of hyperparameters, which consumes a lot of time and effort. So, to address this, this paper offers a solution using the extended compact genetic algorithm for the automatic tuning of the hyperparameters. The novelty in this work comes in the form of modeling the problem of identifying attacks as a multi-objective optimization problem and the usage of linkage learning for solving the optimization problem. The solution is obtained using the feature map-based Convolutional Neural Network that gets encoded into genes, and using the extended compact genetic algorithm the model is optimized for the detection accuracy and latency. The CIC-IDS-2017 and 2018 datasets are used to verify the hypothesis, and the most recent analysis yielded a substantial F1 score of 99.23%. Response time, CPU, and memory consumption evaluations are done to demonstrate the suitability of this model in a fog environment.

A Probe Detection based on Private Cloud using BlockChain (블록체인을 적용한 사설 클라우드 기반 침입시도탐지)

  • Lee, Seyul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.2
    • /
    • pp.11-17
    • /
    • 2018
  • IDS/IPS and networked computer systems are playing an increasingly important role in our society. They have been the targets of a malicious attacks that actually turn into intrusions. That is why computer security has become an important concern for network administrators. Recently, various Detection/Prevention System schemes have been proposed based on various technologies. However, the techniques, which have been applied in many systems is useful for existing intrusion patterns on standard-only systems. Therefore, probe detection of private clouds using BlockChain has become a major security protection technology to detection potential attacks. In addition, BlockChain and Probe detection need to take into account the relationship between the various factors. We should develop a new probe detection technology that uses BlockChain to fine new pattern detection probes in cloud service security in the end. In this paper, we propose a probe detection using Fuzzy Cognitive Map(FCM) and Self Adaptive Module(SAM) based on service security using BlockChain technology.

Real-Time Fire Detection Method Using YOLOv8 (YOLOv8을 이용한 실시간 화재 검출 방법)

  • Tae Hee Lee;Chun-Su Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.77-80
    • /
    • 2023
  • Since fires in uncontrolled environments pose serious risks to society and individuals, many researchers have been investigating technologies for early detection of fires that occur in everyday life. Recently, with the development of deep learning vision technology, research on fire detection models using neural network backbones such as Transformer and Convolution Natural Network has been actively conducted. Vision-based fire detection systems can solve many problems with physical sensor-based fire detection systems. This paper proposes a fire detection method using the latest YOLOv8, which improves the existing fire detection method. The proposed method develops a system that detects sparks and smoke from input images by training the Yolov8 model using a universal fire detection dataset. We also demonstrate the superiority of the proposed method through experiments by comparing it with existing methods.

  • PDF

Chatting Pattern Based Game BOT Detection: Do They Talk Like Us?

  • Kang, Ah Reum;Kim, Huy Kang;Woo, Jiyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2866-2879
    • /
    • 2012
  • Among the various security threats in online games, the use of game bots is the most serious problem. Previous studies on game bot detection have proposed many methods to find out discriminable behaviors of bots from humans based on the fact that a bot's playing pattern is different from that of a human. In this paper, we look at the chatting data that reflects gamers' communication patterns and propose a communication pattern analysis framework for online game bot detection. In massive multi-user online role playing games (MMORPGs), game bots use chatting message in a different way from normal users. We derive four features; a network feature, a descriptive feature, a diversity feature and a text feature. To measure the diversity of communication patterns, we propose lightly summarized indices, which are computationally inexpensive and intuitive. For text features, we derive lexical, syntactic and semantic features from chatting contents using text mining techniques. To build the learning model for game bot detection, we test and compare three classification models: the random forest, logistic regression and lazy learning. We apply the proposed framework to AION operated by NCsoft, a leading online game company in Korea. As a result of our experiments, we found that the random forest outperforms the logistic regression and lazy learning. The model that employs the entire feature sets gives the highest performance with a precision value of 0.893 and a recall value of 0.965.

An Experimental Study on the Behavior of Liquid Fuel Flames in the Confined Space (밀폐공간에서 액체연료 화염의 거동에 관한 실험적 연구)

  • Jeon, Kil Song;Hwang, Ji Hyun;Lee, Tea Won
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.87-93
    • /
    • 2021
  • Modern society shows rapid growth that is different from that of the development of existing technologies. The development of these technologies has led to the tendency of buildings to become dense, large and advancing. Regarding fire hazards, the possibility of large-scale fires causing fatal damage, due to the rapid spread of fire, increases. Therefore, for this reason, fire defense, i.e. detection and fire extinguishing facilities, in buildings are essential and well applied. But there are always limitations to that. Based on this reason, we would like to suggest the introduction of a new concept of a fire safety system. The method presented here is not only to use a single system for fire detection and fire extinguishing systems but to jointly use it in the environment and energy management fields within the building. However, an important step is required before introducing a system of these technologies. The fire extinguishing method proposed by this system is a method of extinguishing by blocking oxygen flowing into the space where the fire occurred. However, a sufficient basis is needed for this system to be applied in practice. Therefore, in this study, we intend to conduct a preliminary experiment to introduce the new concept of fire detection and extinguishing. The experiment used ethanol with a relatively simple combustion reaction and a high possibility of complete combustion. As a result, it was confirmed how the internal values changed during a fire using ethanol. Resultingly, we obtained the internal oxygen concentration and internal environmental changes according to the initial flame size. Lastly, the data accumulated in this study can be used as data for application in an automatic fire extinguishing system.

U.S. FUEL CYCLE TECHNOLOGIES R&D PROGRAM FOR NEXT GENERATION NUCLEAR MATERIALS MANAGEMENT

  • Miller, M.C.;Vega, D.A.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.803-810
    • /
    • 2013
  • The U.S. Department of Energy's Fuel Cycle Technologies R&D program under the Office of Nuclear Energy is working to advance technologies to enhance both the existing and future fuel cycles. One thrust area is in developing enabling technologies for next generation nuclear materials management under the Materials Protection, Accounting and Control Technologies (MPACT) Campaign where advanced instrumentation, analysis and assessment methods, and security approaches are being developed under a framework of Safeguards and Security by Design. An overview of the MPACT campaign's activities and recent accomplishments is presented along with future plans.