• Title/Summary/Keyword: Detection Of A Traffic Accident

Search Result 86, Processing Time 0.026 seconds

A Development of a Automatic Detection Program for Traffic Conflicts (차량상충 자동판단프로그램 개발)

  • Min, Joon-Young;Oh, Ju-Taek;Kim, Myung-Seob;Kim, Tae-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.5
    • /
    • pp.64-76
    • /
    • 2008
  • To increase road safety at blackspots, it is needed to develop a new method that can process before accident occurrence. Accident situation could result from traffic conflict. Traffic conflict decision technique has an advantage that can acquire and analyze data in time and confined space that is less through investigation. Therefore, traffic conflict technique is highly expected to be used in many application of road safety. This study developed traffic conflict decision program that can analyze and process from signalized intersection image. Program consists of the following functional modules: an image input module that acquires images from the CCTV camera, a Save-to-Buffer module which stores the entered images by differentiating them into background images, current images, difference images, segmentation images, and a conflict detection module which displays the processed results. The program was developed using LabVIEW 8.5 (a graphic language) and the VISION module library.

  • PDF

SPACE-BASED OCEAN SURVEILLANCE AND SUPPORT CAPABILITY

  • Yang Chan-Su
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.253-256
    • /
    • 2005
  • The use of satellite remote sensing in maritime safety and security can aid in the detection of illegal fishing activities and provide more efficient use of limited aircraft or patrol craft resources. In the area of vessel traffic monitoring for commercial vessels, Vessel Traffic Service (VTS) which use the ground-based radar system have some difficulties in detecting moving ships due to the limited detection range. A virtual vessel traffic control system is introduced to contribute to prevent a marine accident such as collision and stranding from happening. Existing VTS has its limit. The virtual vessel traffic control system consists of both data acquisition by satellite remote sensing and a simulation of traffic environment stress based on the satellite data, remotely sensed data. And it could be used to provide timely and detailed information about the marine safety, including the location, speed and direction of ships, and help us operate vessels safely and efficiently. If environmental stress values are simulated for the ship information derived from satellite data, proper actions can be taken to prevent accidents. Since optical sensor has a high spatial resolution, JERS satellite data are used to track ships and extract their information. We present an algorithm of automatic identification of ship size and velocity. This paper lastly introduce the field testing results of ship detection by RADARSAT SAR imagery, and propose a new approach for a Vessel Monitoring System(VMS), including VTS, and SAR combination service.

  • PDF

A Study on Deep Learning-based Pedestrian Detection and Alarm System (딥러닝 기반의 보행자 탐지 및 경보 시스템 연구)

  • Kim, Jeong-Hwan;Shin, Yong-Hyeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.58-70
    • /
    • 2019
  • In the case of a pedestrian traffic accident, it has a large-scale danger directly connected by a fatal accident at the time of the accident. The domestic ITS is not used for intelligent risk classification because it is used only for collecting traffic information despite of the construction of good quality traffic infrastructure. The CNN based pedestrian detection classification model, which is a major component of the proposed system, is implemented on an embedded system assuming that it is installed and operated in a restricted environment. A new model was created by improving YOLO's artificial neural network, and the real-time detection speed result of average accuracy 86.29% and 21.1 fps was shown with 20,000 iterative learning. And we constructed a protocol interworking scenario and implementation of a system that can connect with the ITS. If a pedestrian accident prevention system connected with ITS will be implemented through this study, it will help to reduce the cost of constructing a new infrastructure and reduce the incidence of traffic accidents for pedestrians, and we can also reduce the cost for system monitoring.

CCTV-Aided Accident Detection System on Four Lane Highway with Calogero-Moser System (칼로게로 모제 시스템을 활용한 4차선 도로의 사고검지 폐쇄회로 카메라 시스템)

  • Lee, In Jeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.255-263
    • /
    • 2014
  • Today, a number of CCTV on the highway is to observe the flow of traffics. There have been a number of studies where traffic data (e.g., the speed of vehicles and the amount of traffic on the road) are transferred back to the centralized server so that an appropriate action can be taken. This paper introduces a system that detects the changes of traffic flows caused by an accident or unexpected stopping (i.e., vehicle remains idle) by monitoring each lane separately. The traffic flows of each lane are level spacing curve that shows Wigner distribution for location vector. Applying calogero-moser system and Hamiltonian system, probability equation for each level-spacing curve is derived. The high level of modification of the signal means that the lane is in accident situation. This is different from previous studies in that it does more than looking for the signal from only one lane, now it is able to detect an accident in entire flow of traffic. In process of monitoring traffic flow of each lane, when camera recognizes a shadow of vehicle as a vehicle, it will affect the accident detecting capability. To prevent this from happening, the study introduces how to get rid of such shadow. The system using Basian network method is being compared for capability evaluation of the system of the study. As a result, the system of the study appeared to be better in performance in detecting the modification of traffic flow caused by idle vehicle.

Comparison of Association Rule Learning and Subgroup Discovery for Mining Traffic Accident Data (교통사고 데이터의 마이닝을 위한 연관규칙 학습기법과 서브그룹 발견기법의 비교)

  • Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.1-16
    • /
    • 2015
  • Traffic accident is one of the major cause of death worldwide for the last several decades. According to the statistics of world health organization, approximately 1.24 million deaths occurred on the world's roads in 2010. In order to reduce future traffic accident, multipronged approaches have been adopted including traffic regulations, injury-reducing technologies, driving training program and so on. Records on traffic accidents are generated and maintained for this purpose. To make these records meaningful and effective, it is necessary to analyze relationship between traffic accident and related factors including vehicle design, road design, weather, driver behavior etc. Insight derived from these analysis can be used for accident prevention approaches. Traffic accident data mining is an activity to find useful knowledges about such relationship that is not well-known and user may interested in it. Many studies about mining accident data have been reported over the past two decades. Most of studies mainly focused on predict risk of accident using accident related factors. Supervised learning methods like decision tree, logistic regression, k-nearest neighbor, neural network are used for these prediction. However, derived prediction model from these algorithms are too complex to understand for human itself because the main purpose of these algorithms are prediction, not explanation of the data. Some of studies use unsupervised clustering algorithm to dividing the data into several groups, but derived group itself is still not easy to understand for human, so it is necessary to do some additional analytic works. Rule based learning methods are adequate when we want to derive comprehensive form of knowledge about the target domain. It derives a set of if-then rules that represent relationship between the target feature with other features. Rules are fairly easy for human to understand its meaning therefore it can help provide insight and comprehensible results for human. Association rule learning methods and subgroup discovery methods are representing rule based learning methods for descriptive task. These two algorithms have been used in a wide range of area from transaction analysis, accident data analysis, detection of statistically significant patient risk groups, discovering key person in social communities and so on. We use both the association rule learning method and the subgroup discovery method to discover useful patterns from a traffic accident dataset consisting of many features including profile of driver, location of accident, types of accident, information of vehicle, violation of regulation and so on. The association rule learning method, which is one of the unsupervised learning methods, searches for frequent item sets from the data and translates them into rules. In contrast, the subgroup discovery method is a kind of supervised learning method that discovers rules of user specified concepts satisfying certain degree of generality and unusualness. Depending on what aspect of the data we are focusing our attention to, we may combine different multiple relevant features of interest to make a synthetic target feature, and give it to the rule learning algorithms. After a set of rules is derived, some postprocessing steps are taken to make the ruleset more compact and easier to understand by removing some uninteresting or redundant rules. We conducted a set of experiments of mining our traffic accident data in both unsupervised mode and supervised mode for comparison of these rule based learning algorithms. Experiments with the traffic accident data reveals that the association rule learning, in its pure unsupervised mode, can discover some hidden relationship among the features. Under supervised learning setting with combinatorial target feature, however, the subgroup discovery method finds good rules much more easily than the association rule learning method that requires a lot of efforts to tune the parameters.

Traffic Collision Detection at Intersections based on Motion Vector and Staying Period of Vehicles (차량의 움직임 벡터와 체류시간 기반의 교차로 추돌 검출)

  • Shin, Youn-Chul;Park, Joo-Heon;Lee, Myeong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.1
    • /
    • pp.90-97
    • /
    • 2013
  • Recently, intelligent transportation system based on image processing has been developed. In this paper, we propose a collision detection algorithm based on the analysis of motion vectors and the staying periods of vehicles in intersections. Objects in the region of interest are extracted from the subtraction image between background images based on Gaussian mixture model and input images. Collisions and traffic jams are detected by analysing measured motion vectors of vehicles and their staying periods in intersections. Experiments are performed on video sequences actually recoded at intersections. Correct detection rate and false alarm rate are 85.7% and 7.7%, respectively.

Detecting Jaywalking Using the YOLOv5 Model

  • Kim, Hyun-Tae;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.300-306
    • /
    • 2022
  • Currently, Korea is building traffic infrastructure using Intelligent Transport Systems (ITS), but the pedestrian traffic accident rate is very high. The purpose of this paper is to prevent the risk of traffic accidents by jaywalking pedestrians. The development of this study aims to detect pedestrians who trespass using the public data set provided by the Artificial Intelligence Hub (AIHub). The data set uses training data: 673,150 pieces and validation data: 131,385 pieces, and the types include snow, rain, fog, etc., and there is a total of 7 types including passenger cars, small buses, large buses, trucks, large trailers, motorcycles, and pedestrians. has a class format of Learning is carried out using YOLOv5 as an implementation model, and as an object detection and edge detection method of an input image, a canny edge model is applied to classify and visualize human objects within the detected road boundary range. In this study, it was designed and implemented to detect pedestrians using the deep learning-based YOLOv5 model. As the final result, the mAP 0.5 showed a real-time detection rate of 61% and 114.9 fps at 338 epochs using the YOLOv5 model.

A Study on the Influencing Factors for Incident Duration Time by Expressway Accident (고속도로 교통사고 시 돌발상황 지속시간 영향 요인 분석)

  • Lee, Ki-Young;Seo, Im-Ki;Park, Min-Soo;Chang, Myung-Soon
    • International Journal of Highway Engineering
    • /
    • v.14 no.1
    • /
    • pp.85-94
    • /
    • 2012
  • The term "incident duration time" is defined as the time from the occurrence of incident to the completion of the handling process. Reductions in incident durations minimize damages by traffic accidents. This study aims to develop models to identify factors that influence incident duration by investigating traffic accidents on highways. For this purpose, four models were established including an integrated model (Model 1) incorporating all accident data and detailed models (Model 2, 3 and 4) analyzing accidents by location such as basic section, bridges and tunnels. The result suggested that the location of incident influences incident duration and the time of arrival of accident treatment vehicles is the most sensitive factor. Also, significant implications were identified with regard to vehicle to vehicle accidents and accidents by trucks, in night or in weekends. It is expected that the result of this study can be used as important information to develop future policies to manage traffic accidents.

A Study on the Methodology for Analyzing the Effectiveness of Traffic Safety Facilities Using Drone Images (드론 영상기반 교통안전시설 효과분석 방법론 연구)

  • Yong Woo Park;Yang Jung Kim;Shin Hyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.74-91
    • /
    • 2023
  • Several that analyzed the effectiveness of traffic safety facilities a method of comparing changes in the number of accidents, accident severity, speed through traffic accident data before and after installation or speed data collected from vehicle detection systems (VDS). , when traffic accident data is used, it takes a long time to collect because must be collected for at least one year before and after installation. , the road environment may change during this period, such as the addition of other traffic safety facilities in addition to the facilities to be analyzed. , the location of the VDSs for speed data is often different from the location where analysis is required, and there is a problem in that the investigators are exposed to the risk of traffic accident during on-site investigation. Therefore, this study a case study by establishing a methodology to determine effectiveness video images with a drone, extracting data using a program, and comparing vehicle driving speeds before and after speed reduction facilities. Vehicle speed surveys using drones are much safer than observational surveys conducted on highways and have the advantage of tracking speed changes along the vehicle, it is expected that they will be used for various traffic surveys in the future.

Advanced Freeway Traffic Safety Warning Information System based on Surrogate Safety Measures (SSM): Information Processing Methods (Surrogate Safety Measures(SSM)기반 고속도로 교통안전 경고정보 처리 및 가공기법)

  • O, Cheol;O, Ju-Taek;Song, Tae-Jin;Park, Jae-Hong;Kim, Tae-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.59-70
    • /
    • 2009
  • This study presents a novel traffic information system which is capable of detecting unsafe traffic events leading to accident occurrence and providing warning information to drivers for safer driving. Unsafe traffic events are captured by a vehicle image processing-based detection system in real time. Surrogate safety measures (SSM) representing quantitative accident potentials were derived, and further utilized to develop a data processing algorithm and analysis techniques in the proposed system. This study also defined 'emergency warning area' and 'general warning area' for more effective provision of warning information. In addition, methodologies for determining thresholds to trigger warning information were presented. Technical issues and further studies to fully exploit the benefits of the proposed system were discussed. It is expected that the proposed system would be effective for better management of traffic flow to prevent traffic accidents on freeways.