• Title/Summary/Keyword: Detection Modelling

Search Result 85, Processing Time 0.031 seconds

On Improving Convergence Speed and NET Detection Performance for Adaptive Echo Canceller (향상된 수렴 속도와 근단 화자 신호 검출능력을 갖는 적응 반향 제거기)

  • 김남선
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1992.06a
    • /
    • pp.23-28
    • /
    • 1992
  • The purpose of this paper is to develop a new adaptive echo canceller improving convergence speed and near-end-talker detection performance of the conventional echo canceller. In a conventional adaptive echo canceller, an adaptive digital filter with TDL(Tapped-Delay Line) structure modelling the echo path uses the LMS(Least Mean Square) algorithm to cote the coefficients, and NET detector using energy comparison method prevents the adaptive digital filter to update the coefficients during the periods of the NET signal presence. The convergence speed of the LMS algorithm depends on the eigenvalue spread ratio of the reference signal and NET detector using the energy comparison method yields poor detection performance if the magnitude of the NET signal is small. This paper presents a new adaptive echo canceller which uses the pre-whitening filter to improve the convergence speed of the LMS algorithm. The pre-whitening filter is realized by using a low-order lattice predictor. Also, a new NET signal detection algorithm is presented, where the start point of the NET signal is detected by computing the cross-correlation coefficient between the primary input and the ADF(Adaptive Digital Filter) output while the end point is detected by using the energy comparison method. The simulation results show that the convergence speed of the proposed adaptive echo canceller is faster than that of the conventional echo canceller and the cross-correlation coefficient yield more accurate detection of the start point of the NET signal.

  • PDF

A New Adaptive Echo Canceller with an Improved Convergence Speed and NET Detection Performance (향상된 수렴속도와 근달화자신호 검출능력을 갖는 적응반향제기기)

  • 김남선;박상택;차용훈;윤일화;윤대희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.12
    • /
    • pp.12-20
    • /
    • 1993
  • In a conventional adaptive echo canceller, an ADF(Adaptive Digital Filter) with TDL(Tapped-Delay Line) structure modelling the echo path uses the LMS(Least Mean Square) algorithm to compute the coefficients, and NET detector using energy comparison method prevents the ADF to update the coefficients during the periods of the NET signal presence. The convergence speed of the LMS algorithm depends on the eigenvalue spread ratio of the reference signal and NET detector using the energy comparison method yields poor detection performance if the magnitude of the NET signal is small. This paper presents a new adaptive echo canceller which uses the pre-whitening filter to improve the convergence speed of the LMS algorithm. The pre-whitening filter is realized by using a low-order lattice predictor. Also, a new NET signal detection algorithm is presented, where the start point of the NET signal is detected by computing the cross-correlation coefficient between the primary input and the ADF output while the end point is detected by using the energy comparison method. The simulation results show that the convergence speed of the proposed adaptive echo canceller is faster than that of the conventional echo canceller and the cross-correlation coefficient yields more accurate detection of the start point of the NET signal.

  • PDF

Layered Object Detection using Adaptive Gaussian Mixture Model in the Complex and Dynamic Environment (혼잡한 환경에서 적응적 가우시안 혼합 모델을 이용한 계층적 객체 검출)

  • Lee, Jin-Hyung;Cho, Seong-Won;Kim, Jae-Min;Chung, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.387-391
    • /
    • 2008
  • For the detection of moving objects, background subtraction methods are widely used. In case the background has variation, we need to update the background in real-time for the reliable detection of foreground objects. Gaussian mixture model (GMM) combined with probabilistic learning is one of the most popular methods for the real-time update of the background. However, it does not work well in the complex and dynamic backgrounds with high traffic regions. In this paper, we propose a new method for modelling and updating more reliably the complex and dynamic backgrounds based on the probabilistic learning and the layered processing.

SAD : Web Session Anomaly Detection based on Bayesian Estimation (베이지언 추정을 이용한 웹 서비스 공격 탐지)

  • 조상현;김한성;이병희;차성덕
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.2
    • /
    • pp.115-125
    • /
    • 2003
  • As Web services are generally open for external uses and not filtered by Firewall, these result in attacker's target. Web attacks which exploit vulnerable web-applications and malicious users' requests cause economical and social problems. In this paper, we are modelling general web service usages based on user-web-session and detect anomal usages with Bayesian estimation method. Finally we propose SAD(Session Anomaly Detection) for detection unknown web attacks. To evaluate SAD, we made an experiment on attack simulation with web vulnerability scanner, whisker. The results show that the detection rate of SAD is over 90%, which is influenced by several features such as size of window or training set, detection filter method and web topology.

STRUCTURAL CHANGES IN DYNAMIC LINEAR MODEL

  • Jun, Duk B.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.1
    • /
    • pp.113-119
    • /
    • 1991
  • The author is currently assistant professor of Management Science at Korea Advanced Institute of Science and Technology, following a few years as assistant professor of Industrial Engineering at Kyung Hee University, Korea. He received his doctorate from the department of Industrial Engineering and Operations Research, University of California, Berkeley. His research interests are time series and forecasting modelling, Bayesian forecasting and the related software development. He is now teaching time series analysis and econometrics at the graduate level.

  • PDF

Battle Group Combat Simulation Model ('BAGSIM') as an Experimental Tool

  • Chol Sang-Yeong
    • Journal of the military operations research society of Korea
    • /
    • v.16 no.2
    • /
    • pp.29-42
    • /
    • 1990
  • This paper describes a Battle Group Combat Simulation Model (called 'BAGSIM'). BAGSIM is developed to be used as an experimental tool for studies about combat modelling at battle group level. Thus it takes many of the parameters and situations into consideration at this level, and it is designed to be easily adapted to represent equivalent situations to the other more aggregated models. Further the main processes occurring in its simulation procedure such as target detection process, target selection process, firing and killing processes are verified by comparison with the existing stochastic duel models.

  • PDF

A Study on Guidance Methods of Mine Disposal Vehicle Considering the Sensor Errors (센서 오차를 고려한 기뢰제거용 무인잠수정의 유도방법)

  • Byun, Seung-Woo;Kim, Donghee;Im, Jong-Bin;Han, Jong-Hoon;Park, Do-Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.5
    • /
    • pp.277-286
    • /
    • 2017
  • This paper introduces mathematical modelling and control algorithm of expendable mine disposal vehicle. This vehicle has two longitudinal thrusters, one vertical thruster and internal mass moving system which can control pitch rate. Also, the vehicle has an optical camera and forward looking sonar for underwater mine detection and classification. The vehicle is controlled via an optical cable connected with operating console on the mother ship. We describe the vehicle's 6DOF dynamic model and controller which can track the desired trajectory for the way-point tracking. These simulation results shows guidance and maneuvering performance which has other sensor data or not.

A Study on Detection of Significant point in ECG using Neural Network (신경회로망을 이용한 ECG 특성점 검출에 관한 연구)

  • Sohn, Sang-Yoon;Jeong, Kee-Sam;Chung, Sung-Jin;Lee, Myung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.109-112
    • /
    • 1995
  • This paper is a study on the detection of the significant point in ECG signal. ECG signal consists of two components; one is high frequency component to be detected and the other is low frequency component to be removed. AR model is appropriate for modelling and removing the low frequency component. AR model coefficients are updated by artificial neural network algorithm. We can remove the background noise(low frequency) by passing through the AR filter. The remaining signals which include high frequency noise are sent to the matched filter to pass only the signal which we want to extract. The template used in matched filter is updated adaptively.

  • PDF

Digital Modelling of Visual Perception in Architectural Environment

  • Seo, Dong-Yeon;Lee, Kyung-Hoi
    • KIEAE Journal
    • /
    • v.3 no.2
    • /
    • pp.59-66
    • /
    • 2003
  • To be the design method supporting aesthetic ability of human, CAAD system should essentially recognize architectural form in the same way of human. In this study, visual perception process of human was analyzed to search proper computational method performing similar step of perception of it. Through the analysis of visual perception, vision was separated to low-level vision and high-level vision. Edge detection and neural network were selected to model after low-level vision and high-level vision. The 24 images of building, tree and landscape were processed by edge detection and trained by neural network. And 24 new images were used to test trained network. The test shows that trained network gives right perception result toward each images with low error rate. This study is on the meaning of artificial intelligence in design process rather than on the design automation strategy through artificial intelligence.

Modelling Data Flow in Smart Claim Processing Using Time Invariant Petri Net with Fixed Input Data

  • Amponsah, Anokye Acheampong;Adekoya, Adebayo Felix;Weyori, Benjamin Asubam
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.413-423
    • /
    • 2022
  • The NHIS provides free or highly subsidized healthcare to all people by providing financial fortification. However, the financial sustainability of the scheme is threatened by numerous factors. Therefore, this work sought to provide a solution to process claims intelligently. The provided Petri net model demonstrated successful data flow among the various participant. For efficiency, scalability, and performance two main subsystems were modelled and integrated - data input and claims processing subsystems. We provided smart claims processing algorithm that has a simple and efficient error detection method. The complexity of the main algorithm is good but that of the error detection is excellent when compared to literature. Performance indicates that the model output is reachable from input and the token delivery rate is promising.