• 제목/요약/키워드: Detecting Algorithm

검색결과 1,601건 처리시간 0.038초

인공지능 기반 임상의학 결정 지원 시스템 의료기기의 성능 및 안전성 검증을 위한 간 종양 표준 데이터셋 구축 (Construction of a Standard Dataset for Liver Tumors for Testing the Performance and Safety of Artificial Intelligence-Based Clinical Decision Support Systems)

  • 김승섭;이동호;이민우;김소연;신재승;최진영;최병욱
    • 대한영상의학회지
    • /
    • 제82권5호
    • /
    • pp.1196-1206
    • /
    • 2021
  • 목적 간 종양의 조영증강 컴퓨터단층촬영(이하 CT) 영상에 관한 인공지능 알고리즘의 성능과 안전성을 검증할 수 있는 표준 테스팅 데이터셋을 구축하고자 하였다. 대상과 방법 국내 4개 3차 의료기관의 복부 영상의학 전문가 4인이 모여 간 종양 진단 알고리즘의 성능과 안전성을 검증하기 위해 표준 데이터셋이 갖춰야 할 조건을 논의하였다. 각 기관마다 간세포암 75예, 전이암 75예, 그리고 양성 병변 30-50예씩 수집하여, 총 783명 환자의 CT 영상을 대상으로 하였다. 간세포암과 전이암의 경우 병리학적으로 확진된 경우만을 대상으로 하였다. 각 기관의 복부 영상의학 전문가들이 직접 환자의 임상정보를 추출하고 CT 영상에 관한 데이터 라벨링(labeling)을 수기로 시행하였다. CT 영상은 의료용 디지털 영상 및 통신(Digital Imaging and Communications in Medicine, DICOM) 파일로 저장하였다. 결과 복부 영상의학 전문가들이 수기 데이터 라벨링을 시행한 총 783 증례의 간 종양 조영증강 CT의 표준 데이터셋을 구축하였다. 알고리즘의 성능 및 안전성은 병변의 발견 여부 및 특성화의 정확도에 대해 민감도와 특이도를 계산하여 평가할 수 있다. 결론 본 연구에서 구축한 간 종양 조영증강 CT 영상의 표준 데이터셋은 임상의학 결정 지원시스템을 위한 기계학습 기반 인공지능 알고리즘을 평가하는 데에 활용될 수 있다.

로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식 (Accelerometer-based Gesture Recognition for Robot Interface)

  • 장민수;조용석;김재홍;손주찬
    • 지능정보연구
    • /
    • 제17권1호
    • /
    • pp.53-69
    • /
    • 2011
  • 로봇 자체 또는 로봇에 탑재된 콘텐츠와의 상호작용을 위해 일반적으로 영상 또는 음성 인식 기술이 사용된다. 그러나 영상 음성인식 기술은 아직까지 기술 및 환경 측면에서 해결해야 할 어려움이 존재하며, 실적용을 위해서는 사용자의 협조가 필요한 경우가 많다. 이로 인해 로봇과의 상호작용은 터치스크린 인터페이스를 중심으로 개발되고 있다. 향후 로봇 서비스의 확대 및 다양화를 위해서는 이들 영상 음성 중심의 기존 기술 외에 상호보완적으로 활용이 가능한 인터페이스 기술의 개발이 필요하다. 본 논문에서는 로봇 인터페이스 활용을 위한 가속도 센서 기반의 제스처 인식 기술의 개발에 대해 소개한다. 본 논문에서는 비교적 어려운 문제인 26개의 영문 알파벳 인식을 기준으로 성능을 평가하고 개발된 기술이 로봇에 적용된 사례를 제시하였다. 향후 가속도 센서가 포함된 다양한 장치들이 개발되고 이들이 로봇의 인터페이스로 사용될 때 현재 터치스크린 중심으로 된 로봇의 인터페이스 및 콘텐츠가 다양한 형태로 확장이 가능할 것으로 기대한다.

장기간 SPOT/VEGETATION 정규화 식생지수를 이용한 지면 변화 탐지 개선에 관한 연구 (The Study of Land Surface Change Detection Using Long-Term SPOT/VEGETATION)

  • 염종민;한경수;김인환
    • 한국지리정보학회지
    • /
    • 제13권4호
    • /
    • pp.111-124
    • /
    • 2010
  • 지표면의 환경변화를 관측하는 것은 토지사용과 기후변화, 기상연구, 농업, 지표면의 에너지 균형 및 환경시스템에 매우 중요한 연구로 이용되어지고 있다. 최근 위성영상을 이용한 변화탐지는 국지 단위 환경변화 탐지를 위해 그 필요성이 높아지고 있는 실정이며, 특히 잦은 개발과 변화로 주기적인 탐지가 필요한 도심지역의 변화탐지는 국토환경변화 및 지역계획 연구에 대한 효율적인 의사결정 지원이 가능하므로 그 활용성이 매우 높아지고 있다. 이러한 배경으로, 위성 영상을 이용한 원격탐사 자료를 활용한 분석은 비교적 짧은 시간에 광범위한 지역의 영상 정보를 취득할 수 있기 때문에 국토 환경변화 관리 분야에서의 적용 가능성이 높다. 본 연구에서는 인공위성 자료를 활용하여 변화탐지를 수행할 때 공간정보 추출의 정확성을 높이는 기술 개발을 위해 시계열자료의 통계적 분석을 통한 변화탐지기법 개발을 수행하였다. 전처리된 자료를 이용하여 정규화 식생지수를 산출하고 K-mean clustering 무감독 분류를 통해 처리된 데이터를 연구영역의 10년간 자료를 이용한 평균 정규화 식생지수 값과 표준편차 값을 계산하여 각각의 화소별 상대적인 변화량을 측정하여 변화 정도를 탐지하였다. 일반적으로 변화 탐지 수행 시, 태양광 채널을 이용할 경우 기하학적 특성에 의해 발생하는 방향성 효과를 보정하여야 한다. 본 연구에서는 대기 보정과 방향성 보정이 수행된 중 저해상도 정규화 식생지수를 이용하여 객관적인 변화 임계치 값을 결정하였다. 연구결과 반사도 값의 차이를 이용한 변화탐지보다 객관적이고 명확하게 변화지역을 탐지할 수 있었다.

Structural SVM을 이용한 백과사전 문서 내 생략 문장성분 복원 (Restoring Omitted Sentence Constituents in Encyclopedia Documents Using Structural SVM)

  • 황민국;김영태;나동열;임수종;김현기
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.131-150
    • /
    • 2015
  • 영어와 달리 한국어나 일본어 문장의 경우 용언의 필수격을 채우는 명사구가 생략되는 무형대용어 현상이 빈번하다. 특히 백과사전이나 위키피디아의 문서에서 표제어로 채울 수 있는 격의 경우 그 격이 문장에서 더 쉽게 생략된다. 정보검색, 질의응답 시스템 등 주요 지능형 응용시스템들은 백과사전류의 문서에서 주요한 정보를 추출하여 수집하여야 한다. 그러나 이러한 명사구 생략 현상으로 인해 양질의 정보추출이 어렵다. 본 논문에서는 백과사전 종류 문서에서 생략된 명사구 즉 무형대용어를 복원하는 시스템의 개발을 다루었다. 우리 시스템이 다루는 문제는 자연어처리의 무형대용어 해결 문제와 거의 유사하나, 우리 문제의 경우 문서의 일부가 아닌 표제어도 복원에 이용할 수 있다는 점이 다르다. 무형대용어 복원을 위해서는 먼저 무형대용어의 탐지 즉 문서 내에서 명사구 생략이 일어난 곳을 찾는 작업을 수행한다. 그 다음 무형대용어의 선행어 탐색 즉 무형대용어의 복원에 사용될 명사구를 문서 내에서 찾는 작업을 수행한다. 문서 내에서 선행어를 발견하지 못하면 표제어를 이용한 복원을 시도해 본다. 우리 방법의 특징은 복원에 사용된 문장성분을 찾기 위해 Structural SVM을 사용하는 것이다. 문서 내에서 생략이 일어난 위치보다 앞에 나온 명사구들에 대해 Structural SVM에 의한 시퀀스 레이블링(sequence labeling) 작업을 시행하여 복원에 이용 가능한 명사구인 선행어를 찾아내어 이를 이용하여 복원 작업을 수행한다. 우리 시스템의 성능은 F1 = 68.58로 측정되었으며 이는 의미정보의 이용 없이 달성한 점을 감안하면 높은 수준으로 평가된다.

Performance Analysis of Implementation on IoT based Smart Wearable Mine Detection Device

  • Kim, Chi-Wook
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권12호
    • /
    • pp.51-57
    • /
    • 2019
  • 현재 군에서 운용하고 있는 지뢰탐지 방법은 다양하나 통상 야전에서는 육안탐지, 탐침에 의한 탐지, 탐지기에 의한 탐지, 기타탐지 방법 등으로 지뢰를 탐지하며, 탐지기에 의한 탐지방법은 GPR센서를 이용한 탐지기로 금속탐지는 가능하나 비금속탐지가 곤란하며, 탐지를 실시한 곳과 실시하지 않은 지역을 구분할 수 없고, 많은 인력과 시간이 낭비되는 문제점이 있으며, 사용자가 센서를 일정한 속도로 움직이지 않거나, 너무 빨리 움직이는 경우 지뢰를 정확히 탐지하기가 곤란하다. 따라서 이러한 단방향 초음파 센싱 신호를 이용한 지뢰탐지 오류의 문제점을 개선하고자 Human Body 안테나부, 메인마이크로프로세서 유닛부, 스마트안경부, 바디장착형 LCD모니터부, 무선데이터 송수신부, 벨트형 전원공급부, 블랙박스 카메라부, 보안통신 헤드셋부로 구성한 스마트 웨어러블 지뢰탐지 장치를 연구하였다. 이 연구결과를 토대로 IoT(Internet of Things) 기반으로도 지하에 있는 지뢰를 탐지할 수 있는 가능성을 확인하기 위해 실험을 진행하고자 한다. 본 논문은 서론, 실험환경 구성, 시뮬레이션 분석, 결론 순으로 구성 하였으며, 서론에서는 지뢰, 지뢰 탐지기, 연구진행 등 연구내용을 소개 하고, 실험 환경 구성은 야전과 동일한 환경과 매설방법을 기초로 M14폭풍형 대인지뢰, M16A1파편형 대인지뢰, M15 및 M19대전차 지뢰, 지뢰와 유사한 플라스틱 병, 알루미늄 캔으로 구성하였으며, 시뮬레이션 분석은 지뢰탐지 장치 구현 성능을 분석하기 위해 매트랩을 이용한 시뮬레이션을 진행하여, IoT 신호를 생성 및 전송하고, 각각의 수신된 신호를 분석하여 지뢰의 탐지 성능을 확인한 후 IoT 기반 지뢰탐지 알고리즘 시뮬레이션을 통해 성능을 검증하여 지하에 있는 지뢰를 탐지할 수 있는 가능성을 IoT기반으로 입증하려고 한다.

다중 플랫폼(위성, 무인기, AIS, HF 레이더)에 기반한 시나리오별 선박탐지 모니터링 (Operational Ship Monitoring Based on Multi-platforms (Satellite, UAV, HF Radar, AIS))

  • 김상완;김동한;이윤경;이임평;이상호;김정훈;김근용;유주형
    • 대한원격탐사학회지
    • /
    • 제36권2_2호
    • /
    • pp.379-399
    • /
    • 2020
  • 불법 선박 탐지는 해양 감시 체계 구축에서 중요한 요소 중 하나이다. 효과적인 해양 감시를 위해서는 광역적이고 지속적인 해상 감시 수단이 요구된다. 본 연구에서는 인공위성 SAR, HF 레이더, 무인기 그리고 AIS 통합 기반의 선박탐지 모니터링을 가능성을 검토하였다. 각 플랫폼별 시·공간 관측 특성을 고려하여 선박감시 시나리오는 HF 레이더 자료와 AIS 자료를 이용한 상시감시 시스템과 인공위성과 무인기를 활용한 이벤트 감시 시스템으로 구성되었다. 상시감시 시스템은 아직까지 HF 레이더 자료의 낮은 공간해상도로 인한 탐지 가능 선박크기 제한 및 정확도의 한계가 있다. 그러나, 인공위성 SAR 자료를 사용한 이벤트 감시 시스템은 추출된 선박 위치와 AIS 자료를 이용한 불법 선박 탐지, 그리고 SAR 영상에서 추출된 선박속도, 이동방향에 대한 정보 또는 HF 레이더 자료를 이용한 선박 트래킹 정보는 무인기 감시체계로의 전환에 주요한 정보로 활용될 수 있다. 시나리오 구성을 위한 실험을 위해 2019년 6월 25일부터 6월 26일까지 2일간 충청남도 서천군 홍원항 서측에 위치한 연도를 중심으로 통합 현장 실험을 수행하였다. 이로부터 KOMPSAT-5 SAR 영상, 무인기 영상, HF 레이더 자료 및 AIS 자료가 성공적으로 수집되었고 각각 개발된 알고리즘을 적용하여 분석되었다. 개발된 선박감시 모니터링 시스템은 다중 플랫폼으로부터 수집된 자료 및 분석 결과의 가시화 뿐만 아니라 추후 상시 및 이벤트 선박감시 시나리오를 구현에 기반이 될 것이다.

군중-제공 신호지도 작성 및 위치 추적 시스템의 설계 (Design of a Crowd-Sourced Fingerprint Mapping and Localization System)

  • 최은미;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권9호
    • /
    • pp.595-602
    • /
    • 2013
  • WiFi 신호지도법은 실내 환경을 위한 효과적인 위치 추적 기술로 잘 알려져 있다. 하지만 이 기술은 주어진 공간 전역에 걸쳐 미리 구축된 대용량의 신호지도가 있어야 적용할 수 있다. 또한 이 기술을 적용하기 위해서는 환경이 변함에 따라 전문가에 의해 주기적으로 새로운 신호지도를 구축하거나 변경하는 작업이 필요하다. 최근 들어 이러한 문제점을 극복하기 위한 한 가지 방법으로서, 군중-제공 신호지도 작성 방식이 많은 연구자들의 관심을 모으고 있다. 이 방식은 다수의 자발적인 사용자들로 하여금 특정 공간에서 수집한 자신들의 신호지도를 다른 사람들과 함께 서로 공유할 수 있도록 해준다. 따라서 군중-제공 신호지도 방식을 이용하면 신호지도를 자동으로 최신의 상태로 변경할 수 있다. 하지만, 대부분의 군중-제공 신호지도 작성 시스템들에서는 사용자들이 자신의 위치를 스스로 판단하여 수작업으로 직접 입력하도록 요구하고 있다. 그 뿐만 아니라, 이들 시스템에서는 다수의 사용자들로부터 수집되는 신호지도들 중에서 오류가 있는 것들을 찾아내고 이들을 여과해주는 체계적인 메커니즘을 가지고 있지 않다. 본 논문에서는 군중-제공 신호지도 작성 및 위치 추적(CMAL) 시스템의 설계에 대해 소개한다. 본 논문에서 제안하는 시스템은 다수의 스마트폰 사용자들로부터 수집된 지역 신호지도들을 이용하여 자동으로 공유 신호지도를 구축/갱신할 수 있을 뿐만 아니라, 동시에 새로운 신호지도를 이용하여 각 스마트폰 사용자의 위치를 추적할 수 있는 기능을 제공한다. 본 시스템은 각 스마트폰에서 신호지도를 수집하는 다수의 클라이언트들과, 공유 신호지도 데이터베이스를 관리하는 중앙의 서버로 구성된다. 각 클라이언트에는 스마트폰 사용자의 실시간 위치를 추적하면서 동시에 지역 신호지도를 생성하는 파티클 필터-기반의 WiFi SLAM 엔진을 내장하고 있으며, 서버에는 공유 신호지도의 무결성 유지를 위한 가우시안 보간법 기반의 오류 여과 알고리즘을 채택하고 있다. 다양한 실험들을 수행한 결과를 통해, 본 논문에서 제안한 시스템의 높은 성능을 확인할 수 있었다.

적응형 필터와 가변 임계값을 적용하여 잡음에 강인한 심전도 R-피크 검출 (Noise-robust electrocardiogram R-peak detection with adaptive filter and variable threshold)

  • 세이푸르;최철형;김시경;박인덕;김영필
    • 한국산학기술학회논문지
    • /
    • 제18권12호
    • /
    • pp.126-134
    • /
    • 2017
  • 심전도(ECG) 신호에서 R-피크를 추출하는 기법에 대하여 많은 연구가 진행 되어 왔으며, 다양한 방법으로 구현되어 왔다. 그러나 이러한 검출 방법 대부분은 실시간 휴대용 심전도 장치에서 구현하기가 복잡하고 어려운 단점이 있다. R-피크 검출을 위해서는 심전도 데이터에 대하여 베이스라인 드리프트 및 상용전원 잡음 제거 등의 적절한 전처리 및 후가공이 필요하며, 특히 적응형 필터를 활용한 기법에서는 적절한 임계값을 선택하는 것이 중요하다. 적응형 필터의 임계값을 추출하는 방식에서는 고정형(Fixed) 및 적응형(adaptive)으로 구분할 수 있다. 고정 임계 값 추출 방식은 고정된 임계값 보다 낮은 값의 입력이 들어오는 경우에 R-피크 값을 감지하지 못하는 경우가 있으며, 적응 임계값 추출 방식은 때때로 잡음에 의한 잘못된 임계값을 도출하여, 다른 파형(P혹은 T파)의 피크를 감지하는 경우도 나타난다. 본 논문에서는 계산상의 복잡성이 적고, 코드 구현이 단순하면서도 잡음에 강인한 R-피크 검출 알고리즘을 제안한다. 제안된 방식은 앞서 설명한 임계값 추출 문제를 해결하기 위해서, 적응형 필터를 사용해, 심전도 신호에서 베이스 라인 드리프트 제거를 하여 적절한 임계값을 계산하도록 한다. 그리고 필터 처리된 심전도 신호의 최소 값과 최대 값을 사용하여 적절한 임계값이 자동으로 추출 되도록 한다. 그런 다음 심전도 신호로부터 R-피크를 검출하기 위해 임계값 아래에서 'neighborhood searching' 기법이 적용된다. 제안된 방법은 R-피크 검출의 정확도를 향상시키고, 계산 량을 줄여 검출 속도가 보다 빨라지도록 하였다. 다음으로 R-피크 값이 검출 되면, R-R interval 등의 값을 이용해 심박 수를 계산할 수 있도록 한다. 실험결과 심박 수 검출 정확도와 감도가 약 100%로 매우 높았음을 확인할 수 있었다.

Sentienl-1 SAR 영상을 활용한 유류 분포특성과 CNN 구조에 따른 유류오염 탐지모델 성능 평가 (Evaluation of Oil Spill Detection Models by Oil Spill Distribution Characteristics and CNN Architectures Using Sentinel-1 SAR data)

  • 박소연;안명환;이성뢰;김준우;전현균;김덕진
    • 대한원격탐사학회지
    • /
    • 제37권5_3호
    • /
    • pp.1475-1490
    • /
    • 2021
  • SAR 이미지의 통계적 특징을 이용하여 유류오염영역을 특정하는 방법은 분류규칙이 복잡하고 이상값에 의한 영향을 많이 받는다는 한계가 있어, 최근 인공신경망을 기반으로 유류오염영역을 특정하는 연구가 활발히 이루어지고 있다. 하지만, 다양한 유류오염 사례에 대해 모델의 탐지 성능 및 특성을 평가한 연구는 부족하였다. 따라서, 본 연구에서는 기본적인 구조의 CNN인 Simple CNN과 픽셀 단위의 영상 분할이 가능한 U-net을 이용하여, CNN의 구조와, 유류오염의 분포특성에 따른 모델의 탐지성능차이가 존재하는지 분석하였다. 연구결과, 축소경로만 존재하는Simple CNN과 축소경로와 확장경로가 모두 존재하는U-net의 F1 score는 86.24%와 91.44%로 나타나, 두 모델 모두 비교적 높은 탐지 정확도를 보여주었지만, U-net의 탐지성능이 더 높은 것으로 나타났다. 또한 다양한 유류오염 사례에 따른 모델의 성능 비교를 위해, 유류오염의 공간적 분포특성(유류오염 주변의 육지의 분포)과 선명도(유출된 기름과 해수의 경계면이 뚜렷한 정도)를 기준으로, 유류오염 발생사례를 4가지 유형으로 구분하여 탐지 정확도를 평가하였다. Simple CNN은 각각의 유형에 대해 F1 score가 85.71%, 87.43%, 86.50%, 85.86% 로 유형별 최대 편차가 1.71%인 것으로 나타났으며, U-net은 동일한 지표에 대해 89.77%, 92.27%, 92.59%, 92.66%의 F1 score를 보여 최대 편차가 2.90% 로 두 CNN모델 모두 유류오염 분포특성에 따른 수치상 탐지성능의 차이는 크지 않은 것으로 나타났다. 하지만 모든 유류오염 유형에서 Simple CNN은 오염영역을 과대탐지 하는 경향을, U-net은 과소탐지 하는 경향을 보여, 모델의 구조와 유류오염의 유형에 따라 서로 다른 탐지 특성을 가진다는 것을 확인하였고, 이러한 특성은 유류오염과 해수의 경계면이 뚜렷하지 않은 경우 더 두드러지게 나타났다.

사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안 (A Proposal of a Keyword Extraction System for Detecting Social Issues)

  • 정다미;김재석;김기남;허종욱;온병원;강미정
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.1-23
    • /
    • 2013
  • 융합 R&D가 추구해야 할 바람직한 방향은 이종 기술 간의 결합에 의한 맹목적인 신기술 창출이 아니라, 당면한 주요 문제를 해결함으로써 사회적 니즈를 충족시킬 수 있는 기술을 개발하는 것이다. 이와 같은 사회문제 해결형 기술 R&D를 촉진하기 위해서는 우선 우리 사회에서 주요 쟁점이 되고 있는 문제들을 선별해야 한다. 그런데 우선적이고 중요한 사회문제를 분별하기 위해 전문가 설문조사나 여론조사 등 기존의 사회과학 방법론을 사용하는 것은 참여자의 선입견이 개입될 수 있고 비용이 많이 소요된다는 한계를 지닌다. 기존의 사회과학 방법론이 지닌 문제점을 보완하기 위하여 본 논문에서는 사회적 이슈를 다루고 있는 대용량의 뉴스기사를 수집하고 통계적인 기법을 통하여 사회문제를 나타내는 키워드를 추출하는 시스템의 개발을 제안한다. 2009년부터 최근까지 3년 동안 10개 주요 언론사에서 생산한 약 백 30만 건의 뉴스기사에서 사회문제를 다루는 기사를 식별하고, 한글 형태소 분석, 확률기반의 토픽 모델링을 통해 사회문제 키워드를 추출한다. 또한 키워드만으로는 정확한 사회문제를 파악하기 쉽지 않기 때문에 사회문제와 연관된 키워드와 문장을 찾아서 연결하는 매칭 알고리즘을 제안하다. 마지막으로 사회문제 키워드 비주얼라이제이션 시스템을 통해 시계열에 따른 사회문제 키워드를 일목요연하게 보여줌으로써 사회문제를 쉽게 파악할 수 있도록 하였다. 특히 본 논문에서는 생성확률모델 기반의 새로운 매칭 알고리즘을 제안한다. 대용량 뉴스기사로부터 Latent Dirichlet Allocation(LDA)와 같은 토픽 모델 방법론을 사용하여 자동으로 토픽 클러스터 세트를 추출할 수 있다. 각 토픽 클러스터는 연관성 있는 단어들과 확률값으로 구성된다. 그리고 도메인 전문가는 토픽 클러스터를 분석하여, 각 토픽 클러스터의 레이블을 결정하게 된다. 이를 테면, 토픽 1 = {(실업, 0.4), (해고, 0.3), (회사, 0.3)}에서 토픽 단어들은 실업문제와 관련있으며, 도메인 전문가는 토픽 1을 실업문제로 레이블링 하게 되고, 이러한 토픽 레이블은 사회문제 키워드로 정의한다. 그러나 이와 같이 자동으로 생성된 사회문제 키워드를 분석하여 현재 우리 사회에서 어떤 문제가 발생하고 있고, 시급히 해결해야 될 문제가 무엇인지를 파악하기란 쉽지 않다. 따라서 제안된 매칭 알고리즘을 사용하여 사회문제 키워드를 요약(summarization)하는 방법론을 제시한다. 우선, 각 뉴스기사를 문단(paragraph) 단위로 세그먼트 하여 뉴스기사 대신에 문단 세트(A set of paragraphs)를 가지게 된다. 매칭 알고리즘은 각 토픽 클러스터에 대한 각 문단의 확률값을 측정하게된다. 이때 토픽 클러스터의 단어들과 확률값을 이용하여 토픽과 문단이 얼마나 연관성이 있는지를 계산하게 된다. 이러한 과정을 통해 각 토픽은 가장 연관성이 있는 문단들을 매칭할 수 있게 된다. 이러한 매칭 프로세스를 통해 사회문제 키워드와 연관된 문단들을 검토함으로써 실제 우리 사회에서 해당 사회문제 키워드와 관련해서 구체적으로 어떤 사건과 이슈가 발생하는 지를 쉽게 파악할 수 있게 된다. 또한 매칭 프로세스와 더불어 사회문제 키워드 가시화를 통해 사회문제 수요를 파악하려는 전문가들은 웹 브라우저를 통해 편리하게 특정 시간에 발생한 사회문제가 무엇이며, 구체적인 내용은 무엇인지를 파악할 수 있으며, 시간 순서에 따른 사회이슈의 변동 추이와 그 원인을 알 수 있게 된다. 개발된 시스템을 통해 최근 3년 동안 국내에서 발생했던 다양한 사회문제들을 파악하였고 개발된 알고리즘에 대한 평가를 수행하였다(본 논문에서 제안한 프로토타입 시스템은 http://dslab.snu.ac.kr/demo.html에서 이용 가능함. 단, 구글크롬, IE8.0 이상 웹 브라우저 사용 권장).