• Title/Summary/Keyword: Desulfurization reactor

Search Result 45, Processing Time 0.028 seconds

Designing Desulfurization Reactor by Numerical Modeling including Desulfurization, Regeneration Processes, and Adsorption Rate Estimation (탈황, 재생공정 및 흡착속도 추정을 포함한 디젤용 탈황반응기 설계)

  • Choi, Chang Yong;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.874-880
    • /
    • 2017
  • In this study, we performed numerical simulation of the adsorptive desulfurization reactor for a 100 kW fuel cell. Using experimental results and the adsorption kinetics theory, the adsorption rate of sulfur in diesel was estimated and verified by numerical analysis. By analyzing the performance of desulfurization according to reactor size, the optimal reactor size was determined. By maximizing processed diesel amount, optimal diesel flow rate was determined. Regeneration process was also confirmed for the obtained optimal reactor size. The present work will be utilized to design a diesel desulfurization reactor for a fuel cell used in a ship by further process modeling and economic analysis.

Desulfurization kinetics of waste paper-sludge and limestone in a fluidized bed reactor (유동층반응기에서 폐제지슬러지와 석회석의 탈황 동역학)

  • 조상원;오광중
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1089-1096
    • /
    • 2002
  • The objectives of this study were to investigate the desulfurization kinetics of paper sludge and limestone in a fluidized bed reactor according to bed temperature and air velocity. The experimental results were presented as follows ; First, the bed temperature had a great influence on the desulfurization efficiency of limestone and paper sludge. In paper sludge, the optimum condition in desulfurization temperature was at 80$0^{\circ}C$ and in limestone, that was at 850 $^{\circ}C$ or 900 $^{\circ}C$ Second, as air velocity increased, the desulfurization efficiency(or the absorbed amount of sulfur dioxide) by limestone and paper sludge decreased. And the absorbed amount of sulfur dioxide by paper sludge was larger than that of by limestone. Third, as the velocity increased and the optimum desulfurization temperature became, ks and the removal efficiency increased. So, ks, kd highly depended on the air velocity and bed temperature.

Diesel Desulfurization Reactor Design for Fuel Cell by Computational Fluid Dynamics (CFD 모델링을 통한 연료전지용 디젤의 흡착탈황 반응기 디자인)

  • Kwon, Sang Gu;Liu, Jay;Im, Do Jin
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.229-234
    • /
    • 2015
  • Recently, there are increasing numbers of study regarding hydrogen fuels but researches on desulfurization of diesel are rare. In this study, we performed diesel desulfurization reactor design by computation fluid dynamics simulation. By analyzing the change in flow and sulfur concentration at the outlet according to the changes in flow rate, reactor length, and reactor diameter, we have found the minimum catalyst performance for the given flow rate condition and the relation between the reactor performance and the reactor size and shape. We also studied the effects of permeability of the packed bed on the flow and sulfur concentration distribution. The present work can be utilized to design a diesel desulfurization reactor for a fuel cell used in ships. Furthermore, the present work also can be used to design low sulfur diesel supply in oil refineries and therefore contribute to the development of clean petrochemical technology.

A Study on Simulation of Desulfurization in a Continuous Fluidized Bed Using Natural Manganese Ore (천연망간광석을 이용한 연속식 유동층 반응기에서 탈황모사에 관한 연구)

  • Hong, Sung Chang
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.278-285
    • /
    • 2005
  • In the present work, a reaction of sulfur removal and simulation of desulfurization based on the grain model and two-phase theory were studied using natural manganese ore (NMO) as a sorbent in a continuous fluidized bed reactor. The effect of desulfurization was investigated through the grain model considered the change of pore structure as a function of desulfurization time, particle size of NMO, and diffusion velocity of $SO_2$ in the pores. Among these parameters, the diffusion of $SO_2$ in the pores of NMO was the most important factor. Moreover, the reaction of sulfur removal and desulfurization in a continuous fluidized bed reactor using NMO as a sorbent could be well predict through the grain model and two-phase theory, respectively.

A Study on the H??S Removal with Utilization of Seashell Waste(II) - The Characteristics of Sulfided Reaction Using Fixed Bed Reactor- (패각 폐기물을 이용한 $H_2S$ 제거에 관한 연구(II) -고정층 반응기를 이용한 황화반응특성)

  • 김영식
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.86-90
    • /
    • 2003
  • In this study, lots of methods have been studing to utilize energy and decrease contaminated effluents. There has been great progress on IGCC (Integrated gasification combined cycle) to reduce thermal energy losses. The following results have been conducted from desulfurization experiments using waste shell to remove H$_2$S. Fixed bed desulfurization experiments, to obtain basic data for scale-up was indicated. Oyster was the best among the various sorbents, like the results of TGA. Especially, H$_2$S removal efficiency of uncalcined oyster was the highest. When use oyster as desulfurization sorbents, calcination process was not needed. Thus, high desulfurization efficiency would be expected. Fixed bed reactor experiments were indicated particle size of sorbents. These had influenced on desulfurization capacity. As smaller particle size was found better desulfurization capacity. Large capacity difference was found between 0.613 mm and 0.335 mm. But, differences between 0.335 mm and 0.241 mm was relatively small. As bed temperature increased, H$_2$S removal capacity increased. Therefore, both particle size and bed temperature should be considered to remove H$_2$S by sorbents.

The Utilization of Waste Seashells for $H_{2}S$ Removal

  • Kim, Young-Sik;Suh, Jeong-Min;Jang, Sung-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.6
    • /
    • pp.483-488
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_{2}$S was studied in a thermogravimetric analyzer at temperature between 600 and $800^{circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the $H_{2}$S removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy (SEM). Measurements of the reaction of $H_{2}$S with waste seashells show that particles smaller than 0.631 mm can achieve high conversion to CaS. According to TGA and fixed bed reactor results, temperature had influenced on $H_{2}$S removal efficiency. As desulfurization temperature increased, desulfurization efficiency increased. Also, maximum desulfurization efficiency was observed at $800^{circ}C$. Desulfurization was related to calcinations temperature.

Removal Characteristics of $SO_2$ in the Coal Combustion Flue Gas Treatment Convergence System (석탄화력발전소 현장의 석탄연소 배가스 고도처리용 건식 분류층 반응 실증장치에서의 $SO_2$ 제거성능 특성)

  • Jeon, Seong-Min;Park, Hyung-Sang;Park, Young-Ok
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.239-246
    • /
    • 2013
  • The purpose of this study is to determine the feasibility of dry-type desulfurization process for actual application to coal-fired power plant. We used actual exhaust gas from Facility Y, Plant #2 to fabricate a demo-scale testing device to attempt to improve the efficiency of desulfurization. A spout-bed circulating dry scrubber convergence system connecting turbo reactor with bag filter was devised, then analyzed for performance characteristics of $SO_2$ removal for Ca/S mole ratio, superficial gas velocity, and ammonia injection, and for secondary reaction characteristics of the non-reactive sorbent at the bag filter. As a result, the installation of spout-bed circulating dry scrubber convergence system showed better economy and efficiency for removing sulfur than the existing wet/semidry-type desulfurization process. In addition, the best efficiency for desulfurization occurred when connected to the bag filter, with differential pressure maintained at 150 $mmH_2O$.

Numerical Simulation of Catalyst Regeneration Process for Desulfurization Reactor (수치해석을 통한 탈황반응기용 촉매의 재생공정 분석)

  • Choi, Chang Yong;Kwon, Sang Gu;Liu, Jay;Im, Do Jin
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.140-147
    • /
    • 2017
  • In this study, we performed numerical simulation for the catalyst regeneration process of diesel desulfurization reactor. We analyzed the changes in regeneration process according to purge gas flow rate, catalyst permeability, reactor size, and heat loss of reactor. We have found that the regeneration process is very much affected by temperature changes whereas it is hardly affected by catalyst permeability and porosity. We also estimated the regeneration time according to purge gas flow rate and initial temperatures and have found that increasing purge gas temperature is more effect for fast regeneration. The present results can be utilized to design a regeneration process of diesel desulfurization reactor for a fuel cell used in ships. Furthermore, the present work also can be used to design low sulfur diesel supply in oil refineries and therefore contribute to the development of clean petrochemical technology.

Microbial Desulfurization of Coal by Iron-Oxidizing Bacteria Thiobacillus ferrooxidans in packed beds (철산화 박테리아 Thiobacillus ferrooxidans를 이용한 충전탑 반응기에서의 석탄의 생물학적 탈황)

  • 류희욱
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.124-130
    • /
    • 1999
  • To evaluate the technical of microbial coal desulfurization during the storage in coal dumps, microbial pyrite oxidation in a packed column reactor with Thiobacillus ferrooxidans has been investigated. For microbial desulfurization in a packed reactor system, coal particle size over 1.0 mm with uniform size distribution seems to be most suitable as fas as drainage behavior and accessability of pyrite are concerned. When coal samples of 1∼2 and 2∼4 mm particle size were size were used, about 32∼42% of pyritic sulfur was removed within 70 days. The rate of pyritic sulfur oxidation was in the range of 348∼803 mg S/kg coal ·d, and the sulfur removal rates in packed columns were about 15∼25% of those in suspension cultures. Without any circulation of liquid medium, microbial coal desulfurization could be possible by the inoculation of T. ferrooxidans along on the coal dump. It was concluded that a microbial percolation process is one of possible processes for the desulfurization of high sulfur coal during a long-term storage.

  • PDF

Improvement of Desulfurization Performance of Low-grade Limestone Slurry Using Organic Acid Additives (유기산 첨가제를 이용한 저품질 석회석 슬러리의 탈황 성능 개선)

  • Jeong, Ji Eun;Cho, In Ah;Lee, Chang-Yong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.190-196
    • /
    • 2021
  • Desulfurization reaction in a bubble type reactor was carried out by adding three organic acids such as acetic acid, lactic acid, and antic acid to investigate the enhancement of the desulfurization performance of low-grade limestone. Desulfurization of limestone slurry without organic acids initiated to degrade at pH 5.2 or less, whereas organic acid-added limestone slurry exhibited a stable efficiency in the initial desulfurization with slurry pH ranging 4.2~4.5. At slurry pH below 4, the desulfurization performance of limestone slurry with addition of organic acids may be related to the amount of anions produced by dissociation of the organic acids. When limestone slurry had a large amount of anions, a rapid decrease in buffer capacity of slurry pH did not occur. These results were due to the acidity and dissociation of organic acids. The desulfurization performance of low-grade limestone slurry increased in the order of acetic acid (2.6%) < lactic acid (6.4%) < formic acid (16.7%).