• Title/Summary/Keyword: Desulfurization

Search Result 353, Processing Time 0.023 seconds

Development and Evaluation on a Model for Reducing SO2: Case Study on Global 2100 Model (산성비 원인물질인 이산화황 저감모형 구축과 평가에 관한 연구: Global 2100 모형을 중심으로)

  • Lee, Dong-Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.2
    • /
    • pp.93-102
    • /
    • 1997
  • Acid rain below pH 5.6 is responsible for 40% of annual precipitation in Korea and it is more serious especially in major cites. Because of that, it is urgent to make measures to reduce the emission of $SO_2$, one of the major air pollutants causing acid rain. The national total emission of $SO_2$ in 1994 was estimated as 1.6 million tons. The $SO_2$ emission in 2020, is expected to increase up to 3.2 million tons, about 2 times that of 1994 under Business-As-Usual scenario. We could take various $SO_2$ reduction measures such as installing desulfurization facilities, the supply of low-sulfur oil and clean fuel(LNG), energy savings, upgrading of production process. However, it is necessary to check the economic feasibility and the attainability to reduction target with a dynamic optimization mode, "Global 2100 Model". The cost-benefit analyses for the measures using the revised "Global 2100 Model" clearly revealed that the desulfurization facilities should be introduced to reduce the $SO_2$ concentration to 0.01 ppm with fuel substitution. If the introduction of desulfurization facilities is delayed, We can not attain the goal of Ministry of Environment before the year of 2012, even in the case that almost all the fuels would be substituted with LNG.

  • PDF

Removal Characteristics of $SO_2$ in the Coal Combustion Flue Gas Treatment Convergence System (석탄화력발전소 현장의 석탄연소 배가스 고도처리용 건식 분류층 반응 실증장치에서의 $SO_2$ 제거성능 특성)

  • Jeon, Seong-Min;Park, Hyung-Sang;Park, Young-Ok
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.239-246
    • /
    • 2013
  • The purpose of this study is to determine the feasibility of dry-type desulfurization process for actual application to coal-fired power plant. We used actual exhaust gas from Facility Y, Plant #2 to fabricate a demo-scale testing device to attempt to improve the efficiency of desulfurization. A spout-bed circulating dry scrubber convergence system connecting turbo reactor with bag filter was devised, then analyzed for performance characteristics of $SO_2$ removal for Ca/S mole ratio, superficial gas velocity, and ammonia injection, and for secondary reaction characteristics of the non-reactive sorbent at the bag filter. As a result, the installation of spout-bed circulating dry scrubber convergence system showed better economy and efficiency for removing sulfur than the existing wet/semidry-type desulfurization process. In addition, the best efficiency for desulfurization occurred when connected to the bag filter, with differential pressure maintained at 150 $mmH_2O$.

Desulfurization of Model Oil via Adsorption by Copper(II) Modified Bentonite

  • Yi, Dezhi;Huang, Huan;Li, Shi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.777-782
    • /
    • 2013
  • In order to further reduce the sulfur content in liquid hydrocarbon fuels, a desulfurization process by adsorption for removing dimethyl sulfide (DMS) and propylmercaptan (PM) was investigated. Bentonite adsorbents modified by $CuCl_2$ for the desulfurization of model oil was investigated. The results indicated that the modified bentonite adsorbents were effective for adsorption of DMS and PM. The bentonite adsorbents were characterized by X-ray diffraction (XRD) and thermal analysis (TGA). The acidity was measured by FT-IR spectroscopy. Several factors that influence the desulfurization capability, including loading and calcination temperature, were studied. The maximum sulfur adsorption capacity was obtained at a Cu(II) loading of 15 wt %, and the optimum calcination temperature was $150^{\circ}C$. Spectral shifts of the ${\nu}$(C-S) and ${\nu}$(Cu-S) vibrations of the complex compound obtained by the reaction of $CuCl_2$ and DMS were measured with the Raman spectrum. On the basis of complex adsorption reaction and hybrid orbital theory, the adsorption on modified bentonite occurred via multilayer intermolecular forces and S-M (${\sigma}$) bonds.

Electrochemical Treatment of COD and T-N in Wastewater from Flue Gas Desulfurization Process (전해처리법에 의한 탈황폐수 중의 COD 및 총 질소 제거)

  • Cha, Go-Eun;Noh, Da-Ji;Seo, Jeong-Hyeon;Lim, Jun-Heok;Lee, Tae-Yoon;Lee, Jea-Keun
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1073-1078
    • /
    • 2013
  • This paper presents the results of the electrochemical treatment of chemical oxygen demand(COD) and total nitrogen(T-N) compounds in the wastewater generated from flue gas desulfurization process by using a lab-scale electrolyzer. With the increase in the applied current from 0.6 Ah/L to 1.2 Ah/L, the COD removal efficiency rapidly increases from 74.5% to 96%, and the T-N removal efficiency slightly increases from 37.2% to 44.9%. Therefore, it is expected that an electrochemical treatment technique will be able to decrease the amount of chemicals used for reducing the COD and T-N in wastewater of the desulfurization process compared to the conventional chemical treatment technique.

A study on the desulfurization wastewater treatment using Ferrate(VI) (Ferrate(VI)를 이용한 발전소 탈황폐수 처리에 관한 연구)

  • Jo, Eun-young;Park, Chan-gyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.297-301
    • /
    • 2017
  • Wastewater treatment using ferrate (VI) solution is becoming a promising technology for several years, because it is high efficient and harmless technology. In this study, the ferrate (VI) solution was tested to treatment of desulfurization wastewater. The effluent from desulfurization wastewater treatment process of power plant was used as raw water, and the COD and T-N removal efficiency of ferrate(VI) solution were investigated. In the test, as the injection rate increased from 0.1 to 1.0%, the removal efficiency of COD also slightly increased, about 80% of COD were removed in 1.0% of injection rate. In the case of T-N, about 50% of T-N was removed in the condition of 1.0% of injection rate. The removal efficiency of COD and T-N also affected by reaction time, maximum removal efficiency was shown in 30 min of treatment. From these results, the wastewater treatment with ferrate(VI) solution can be great solutions for treatment of non-biodegradable pollutants in wastewater, especially for the 3rd treatment of wastewater.

Fabrication of Fe coated Mg Based Desulfurization Powder by Mechanical Alloying Process (기계적 합금화 공정에 의한 Fe가 코팅된 Mg 탈황 분말 제조 연구)

  • Song, Joon-Woo;Guillermo, Otaduy;Chun, Byong-Sun;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.226-231
    • /
    • 2012
  • In this research, the coating behavior of Mg and Fe desulfurization powder fabricated by low energy and conventional planetary mill equipment was investigated as a function of milling time, which produces uniform Fe coated powders due to milling energy. Since high energy ball milling results in breaking the Fe coated Mg powders into coarse particles, low energy ball milling was considered appropriate for this study, and can be implemented in desulfurization industry widely. XRD and FE-SEM analyses were carried out to investigate the microstructure and distribution of the coating material. The thickness of the Fe coating layer reaches a maximum of 14 ${\mu}m$ at 20 milling hours. The BCC structures of Fe particles are deformed due to the slip system of Fe coated Mg particles.

Deep Desulfurization of Fuels by Heteropolyanion-Based Ionic Liquid

  • Li, Jinlei;Hu, Bing;Hu, Chuanqun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.225-230
    • /
    • 2013
  • A new heteropolyanion-based ionic ($[Hmim]_5PMo_{10}V_2O_{40}$) was synthesized by the reaction of molybdovanadophosphoric acid ($H_5PMo_{10}O_{40}$) with N-methylimidazole. [$[Hmim]_5PMo_{10}V_2O_{40}$ showed a high catalytic activity in the oxidative desulfurization of sulfur-containing compounds in 1-methylimidazolium tetrafluoroborate ($[Hmim]BF_4$) ionic liquid using 30% aqueous $H_2O_2$ as the oxidant. The catalytic system was of high activity, simplified workup and flexible recyclability. The catalytic oxidation reactivity of sulfur-containing compounds decreased in the order dibenzothiophene (DBT) > 4,6-dimethyldibenzothiophene (4,6-DMDBT) > benzothiophene (BT). The influences of various parameters including reaction time (t) and temperature (T), catalyst dosage, and oxidant to sulfur molar ratio n(O)/n(S) on the desulfurization of model oil were investigated in details. 99.1% of DBT conversion in the model oil was achieved at atmospheric pressure under the optimal conditions: n(O)/n(S) = 4:1, $60^{\circ}C$, 100 min and molar ratio of catalyst to sulfur of 0.062. The ionic liquid can be recycled six times without significant decrease in activity.

A study on desulfurization by anthracite - bituminous coal blend combustion in a fluidized bed combustor --- A desulfurization using waste paper sludge --- (유동층연소로에서 유,무연탄 혼합연소시 탈황에 관한 연구 --- 폐제지슬러지를 이용한 황산화물 제어 ---)

  • Cho, Sang-Won;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.3 no.1
    • /
    • pp.96-105
    • /
    • 1997
  • The objectives of this study were to investigate $SO_2$ removal efficiency of anthracite - bituminous coal blend combustion in a fludized bed coal combustor with Ca/S, anthracite ratio, bed temperature, and waste paper sludge particle size. The experimental results were presented as follow ; the effect of the desulfurization by the particle size of waste paper sludge was a great and $SO_2$ removal efficiency was heigest in paper sludge dia $1016{\mu}m$. And the difference of $SO_2$ removal efficiency according to air velocity was not too large. As Ca/S mole ratio incresed, $SO_2$ removal efficiency incresed rapidly up to Ca/S mole ratio 3 while the desulfurization rates did not increse too largely in the range of more than the level. The bed temperature had a great deal of effect on the desulfurization rate. So the $SO_2$ removal efficiency was a graet using waste paper sludge that the properbility of paper sludge as sorbent was conformed.

  • PDF

A Study on the Desulfurization and Demineralization by Chemical Treatment of Petroleum Cokes (Petroleum Cokes의 화학적 처리에 의한 황성분 및 회분제거에 관한 연구)

  • Han, Woong;Lee, Si-Hyun;Park, Chu-Sik;Yang, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1115-1124
    • /
    • 1996
  • An MCL(Molten Caustic Leaching) treatment is a chemical refinery process which is used for the desulfurization and demineralization by alkali treatment. The MCL treatment removes ash by converting mineral like Si, Fe, V, Ni etc. in petroleum cokes into soluble salts. The MCL has an advantage minimizing carbon loss in comparison to other desulfurization process. Reaction variables for the desulfurization and demineralization in the study were leaching temperature, leaching time, ratio of caustic to cokes, acid concentration and time for washing, and particle size. At the optimum condition, above 99% of desulfurization and about 90% of demineralization was obtained. FT-IR and SEM analysis showed that the structure and surface of the particle was closely related with the degree of sulfur and ash removal, and leaching temperature as well.

  • PDF

Diesel Desulfurization Reactor Design for Fuel Cell by Computational Fluid Dynamics (CFD 모델링을 통한 연료전지용 디젤의 흡착탈황 반응기 디자인)

  • Kwon, Sang Gu;Liu, Jay;Im, Do Jin
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.229-234
    • /
    • 2015
  • Recently, there are increasing numbers of study regarding hydrogen fuels but researches on desulfurization of diesel are rare. In this study, we performed diesel desulfurization reactor design by computation fluid dynamics simulation. By analyzing the change in flow and sulfur concentration at the outlet according to the changes in flow rate, reactor length, and reactor diameter, we have found the minimum catalyst performance for the given flow rate condition and the relation between the reactor performance and the reactor size and shape. We also studied the effects of permeability of the packed bed on the flow and sulfur concentration distribution. The present work can be utilized to design a diesel desulfurization reactor for a fuel cell used in ships. Furthermore, the present work also can be used to design low sulfur diesel supply in oil refineries and therefore contribute to the development of clean petrochemical technology.