Petroleum Cokes의 화학적 처리에 의한 황성분 및 회분제거에 관한 연구

A Study on the Desulfurization and Demineralization by Chemical Treatment of Petroleum Cokes

  • 한웅 (충남대학교 정밀공업화학과) ;
  • 이시훈 (한국에너지기술연구소) ;
  • 박주식 (한국에너지기술연구소) ;
  • 양현수 (충남대학교 정밀공업화학과)
  • Han, Woong (Dept. of Fine Chem. Eng. and Chemistry, Chungnam Nat'l Univ.) ;
  • Lee, Si-Hyun (Korea Institute of Energy Reaserch) ;
  • Park, Chu-Sik (Korea Institute of Energy Reaserch) ;
  • Yang, Hyun-Soo (Dept. of Fine Chem. Eng. and Chemistry, Chungnam Nat'l Univ.)
  • 투고 : 1996.07.29
  • 심사 : 1996.09.09
  • 발행 : 1996.12.10

초록

MCL(Molten Caustic Leaching) 처리는 알카리에 의해 황성분 및 회분을 제거할 수 있도록 유용하게 개발된 화학적 정제공정이며, Si, Fe, V, Ni 등과 같은 무기물을 수용성염으로 전환을 시켜 제거한다. 그리고 MCL은 다른 탈황 공정보다도 탄소손실을 최소로할 수 있는 장점이 있다. 본 연구에서 황성분 및 회분제거에 대한 반응변수로는 침출온도, 침출시간, NaOH/cokes 비율, 산세정 농도와 세정 시간 그리고 입자크기 등이었다. 최적의 조건에서 MCL 처리를 한 결과 황성분과 회분은 각각 99%와 90%가 제거되었으며, 이때 FT-IR과 SEM의 결과에서 petroleum cokes 입자의 구조 및 표면변화는 침출온도 및 황성분과 회분의 제거율에 밀접한 관계를 나타내었다.

An MCL(Molten Caustic Leaching) treatment is a chemical refinery process which is used for the desulfurization and demineralization by alkali treatment. The MCL treatment removes ash by converting mineral like Si, Fe, V, Ni etc. in petroleum cokes into soluble salts. The MCL has an advantage minimizing carbon loss in comparison to other desulfurization process. Reaction variables for the desulfurization and demineralization in the study were leaching temperature, leaching time, ratio of caustic to cokes, acid concentration and time for washing, and particle size. At the optimum condition, above 99% of desulfurization and about 90% of demineralization was obtained. FT-IR and SEM analysis showed that the structure and surface of the particle was closely related with the degree of sulfur and ash removal, and leaching temperature as well.

키워드

과제정보

연구 과제 주관 기관 : 과학기술처

참고문헌

  1. Hydrocarbon processing R. A. Meyers
  2. Fuel Process. Tech. v.22 R. G. Richardson;C. D. Criswell;R. Markuszewski
  3. Ind. Eng. Chem. Res. v.31 H. A. Ibrahim;B. I. Morsi
  4. Can. J. of Chem. Eng. v.60 E. S. Hall;E. L. Tollefson;Z. M. George;L. G. Scheider
  5. Proc. 12th Annual International Pittsburgh Coal Conference S. H. Lee;E. K. Shon;S. W. Park
  6. Can, J. of Chem. Eng. v.72 M. T. Ityokumbul
  7. Fuel v.52 N. El-Kaddah;S. Y. Ezz
  8. Fuel v.57 Z. M. George;L. G. Scheider;E. L. Tollefson
  9. Ind. Eng. Chem. v.51 R. B. Mason
  10. Ind. Eng. Chem. v.52 S. J. Lukasiexicz;G. C. Johnson
  11. Can. J. of Chem. Eng. v.60 E. S. Hall;E. L. Tollefson;Z. M. George;L. Schneider
  12. Ind. Eng. Chem. Prod. Res. Dev. v.25 I. Mochida;T. Marutsuka;Y. Korai;H. Fujitsu
  13. Fuel Process. Tech. v.38 M. T. Ityokumbul
  14. Fuel Process. Tech. v.38 M. T. Ityokumbul;K. L. Kasperski
  15. Fuel Process. Tech. v.22 R. G. Richardson;C. D. Criswell;R. Markuszewski
  16. Petroleum Processing Handbook S. W. Martin;V. B. Guthrie
  17. Sep. Sci & Tech v.26 C. D. Chriswell;N. D. Shah;R. Markuszewski
  18. KIER-953212 Petroleum Cokes로부터의 탈황기술개발 이시훈;손응권;최상일;현주수(등)
  19. Fundamentals of coal beneficiation and utilization S. C. Tsai