• 제목/요약/키워드: Desktop 3D printer

검색결과 5건 처리시간 0.018초

보급형 3D 프린터로 제작한 쇄골 골절 모델을 이용한 정형외과 수술에 대한 유용성과 활용가능성 평가 (Evaluation of Usefulness and Availability for Orthopedic Surgery using Clavicle Fracture Model Manufactured by Desktop 3D Printer)

  • 오왕균
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제37권3호
    • /
    • pp.203-209
    • /
    • 2014
  • 쇄골 CT 영상을 이용하여 보급형 3D 프린터로 제작된 모델로 사전 수술계획을 실시하여 수술효율에 대한 유용성과 임상적 활용가능성을 평가하였다. CT 영상을 Open Source DICOM Viewer Osirix에서 STL 파일로 변환하여 FDM 와이어 척층가공방식의 보급형 3D 프린터로 환자 맞춤형 쇄골 골절 모델을 제작하였다. 또한, 인체의 좌우 대칭 특성을 이용하여 골절되지 않은 반대편 쇄골의 STL 파일을 Mirror 기법으로 손상되기 전 원형의 모델을 복원, 제작하였다. 모델은 골절의 위치와 크기, 정도가 동일하게 출력되었다. 영상의학과에서 적은 비용과 시간으로 직접 제작한 쇄골 모델을 활용하면 수술시 2차 손상을 줄이고, 최소 침습적 피하금속판 골유합술(MIPO)로 수술효율을 높일 수 있어 임상적으로 유용할 것으로 생각된다.

가구디자인에서 3D Printer의 활용 현황에 관한 연구 (A Study on the Status of the 3D Printer in Furniture Design)

  • 강현대
    • 한국가구학회지
    • /
    • 제26권4호
    • /
    • pp.383-391
    • /
    • 2015
  • In recent years the industry has utilized some of the 3D printers in the manufacturing process a trend which spread also a personal desktop 3D printer priced. The 3D printer can create the 3D object by using an ink or a laser instead of the powders, and various liquid plastic material. Properties of 3D printers are liquid, solid, powder and raw materials are also classified as varied. New ideas and processes in the form of designer furniture, becoming increasingly evolved through the development of materials and technologies. Science, art and technology combine to create a new aesthetic for the complex and free binding structure is a combination of design and materials are available in craft and the structure appears not showing. 3D scanning was not simply continue to develop as the production process by a variety of tools and content transformation. Create new mathematical tables and chairs designed by the theory fit the digital age shows a coupling structure with decoration into small pieces. It has created a new craft technique in the digital age.

Utilization of desktop 3D printer-fabricated "Cost-Effective" 3D models in orthognathic surgery

  • Narita, Masato;Takaki, Takashi;Shibahara, Takahiko;Iwamoto, Masashi;Yakushiji, Takashi;Kamio, Takashi
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제42권
    • /
    • pp.24.1-24.7
    • /
    • 2020
  • Background: In daily practice, three-dimensional patient-specific jawbone models (3D models) are a useful tool in surgical planning and simulation, resident training, patient education, and communication between the physicians in charge. The progressive improvements of the hardware and software have made it easy to obtain 3D models. Recently, in the field of oral and maxillofacial surgery, there are many reports on the benefits of 3D models. We introduced a desktop 3D printer in our department, and after a prolonged struggle, we successfully constructed an environment for the "in-house" fabrication of the previously outsourced 3D models that were initially outsourced. Through various efforts, it is now possible to supply inexpensive 3D models stably, and thus ensure safety and precision in surgeries. We report the cases in which inexpensive 3D models were used for orthodontic surgical simulation and discuss the surgical outcomes. Review: We explained the specific CT scanning considerations for 3D printing, 3D printing failures, and how to deal with them. We also used 3D models fabricated in our system to determine the contribution to the surgery. Based on the surgical outcomes of the two operators, we compared the operating time and the amount of bleeding for 25 patients who underwent surgery using a 3D model in preoperative simulations and 20 patients without using a 3D model. There was a statistically significant difference in the operating time between the two groups. Conclusions: In this article, we present, with surgical examples, our in-house practice of 3D simulation at low costs, the reality of 3D model fabrication, problems to be resolved, and some future prospects.

3D 발 스캐너와 3D 프린터를 이용한 남성화 라스트 설계 (Last Design for Men's Shoes using 3D Foot Scanner and 3D Printer)

  • 오설영;서동애;김형규
    • 한국콘텐츠학회논문지
    • /
    • 제16권2호
    • /
    • pp.186-199
    • /
    • 2016
  • 구두를 제작하는 기본 틀인 라스트는 3차원 형상과 관련된 정보와 기술이 총체적으로 집약된 결과물이다. 해외에서는 이미 3D 프틴팅 기술을 이용한 구두 제작이 상용화 단계에 도달하였으나, 국내에서는 아직 도입 초기 단계이다. 본 연구에서는 국내 제화산업의 경쟁력 확대를 위해, 3D 스캐닝, 3D 모델링, 3D 프린팅의 첨단 기술로 구성된 3D 제작 프로세스를 라스트 제작에 도입하였다. 이를 위해, 2010년도 SizeKorea에서 3D 스캔한 30대 남성 200명의 3D 발 형상을 사용하여, 요인분석, 군집분석을 실시하고, 3개의 발 유형을 분류한 후, 각 유형별 대표모델을 선정하였다. 대표모델들의 3D 스캐닝 형상에서 XY, YZ, XZ평면의 단면도들을 추출하고, 라스트 모델링의 스케치 단면으로 사용하였다. Solidworks CAD를 사용하여 라스트를 3D 모델링하였으며, 보급형 3D 프린터인 MakerBot Replicator2로 3D 프린팅 하였다. 본 연구 결과는 국내 제화산업에서 3D 프린팅 기술의 상용 가능성을 보여주었다. 3D 스캐닝, 3D 모델링, 3D 프린팅의 3단계 생산설계 방식은 향후 의류패션산업 전 분야에서 폭넓게 사용될 것으로 기대된다.

Comparison of Flexural Strength of Three-Dimensional Printed Three-Unit Provisional Fixed Dental Prostheses according to Build Directions

  • Park, Sang-Mo;Park, Ji-Man;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young
    • Journal of Korean Dental Science
    • /
    • 제12권1호
    • /
    • pp.13-19
    • /
    • 2019
  • Purpose: The aim of this study was to compare the flexural strength of provisional fixed dental prostheses which was three-dimensional (3D) printed by several build directions. Materials and Methods: A metal jig with two abutment teeth and pontic space in the middle was fabricated. This jig was scanned with a desktop scanner and provisional restoration was designed on dental computer-aided design program. On the preprocessing software, the build angles of the restorations were arranged at $0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$ and support was added and resultant structure was sliced to a thickness of $100{\mu}m$. Processed restorations were printed with digital light processing type 3D printer using poly methyl meta acrylate-based resin. After washing and post-curing, compressive loading was applied at a speed of 1 mm/min on a metal jig fixed to a universal testing machine. The maximum pressure at which fracture occurred was measured. For the statistical analysis, build direction was set as the independent variable and fracture strength as the dependent variable. One-way analysis of variance and Tukey's post hoc analysis was conducted to compare fracture strength among groups (${\alpha}=0.05$). Result: The mean flexural strength of provisional restoration 3D printed with the build direction of $0^{\circ}$ was $1,053{\pm}168N$; it was $1,183{\pm}188N$ at $30^{\circ}$, $1,178{\pm}81N$ at $45^{\circ}$, $1,166{\pm}133N$ at $60^{\circ}$, and $949{\pm}170N$ at $90^{\circ}$. The group with a build direction of $90^{\circ}$ showed significantly lower flexural strength than other groups (P<0.05). The flexural strength was significantly higher when the build direction was $30^{\circ}$ than when it was $90^{\circ}$ (P<0.01). Conclusion: Among the build directions $0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$ set for 3D printing of fixed dental prosthesis, an orientation of $30^{\circ}$ is recommended as an effective build direction for 3D printing.