• 제목/요약/키워드: Desired response

검색결과 513건 처리시간 0.025초

와이어형 형상기억합금 구동기를 이용한 인체 손가락 모델에 대한 연구 (A Study on the Human Finger Model using Wire-type SMA Actuator)

  • 정진우;임수철;박영필;양현석;박노철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.891-894
    • /
    • 2005
  • This paper describes a human finger model driven by shape memory alloy(SMA) wires. The finger model has three joints that are similar to human finger. Each joint is actuated with two wires in the antagonistic manner and six wires are used to actuate three finger joint. In order to obtain the desirable finger motion, the diameters of the SMA wires are designed with different diameters by considering the required actuating force and response time. The rotary sensors are used to measure the angle positions of the joints and PWM control using PID algorithm is used to achieve desired angle positions of the finger joints. After estimating the control performance of each finger joint for the desired angle position, the antagonistic motion control of the finger model is experimentally evaluated.

  • PDF

효과적인 간섭 부공간 추정을 통한 조향에러에 강인한 고유공간 기반 적응 어레이 (Eigenspace-Based Adaptive Array Robust to Steering Errors By Effective Interference Subspace Estimation)

  • 최양호
    • 한국통신학회논문지
    • /
    • 제37권4A호
    • /
    • pp.269-277
    • /
    • 2012
  • 원하는 신호의 어레이 응답벡터와 조향벡터사이에 불일치가 있다면 적응 어레이는 원하는 신호와 간섭신호를 동시에 감쇠하기 때문에 심한 성능저하를 가져올 수 있다. 본 논문에서는 조향벡터에 도래각 에러뿐만 아니라 랜덤에러가 있을 때 이에 대처하는 강인한 적응 어레이 기법을 제시한다. 제시된 기법에서는 상관행렬로부터 SIS(signal-plus-interference subspace) 부공간을 구한 후, ULA(uniform linear array) 구조를 이용하여 원하는 신호의 방향벡터 영향을 가능한 줄이면서 간섭 부공간을 추출하고 이에 직교하도록 가중벡터를 구하여 조향벡터 에러에 대한 강인성을 얻는다. 제안된 방식은 DCRCB(doubly constrained robust Capon beamformer) 등 기존방식보다 우수한 SINR(signal-to-interference plus noise ratio) 성능을 가짐을 시뮬레이션 결과는 보여준다.

두 개의 EPPR 밸브가 적용된 정/역 가변형 사판식 액셜 피스톤 펌프 시스템 모델링 (System Modeling of a Bi-directional Outlet Variable Swash Plate Type Axial Piston Pump with Two EPPR Valves)

  • 김용길;김수태;함영복;윤소남;손호연
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권1호
    • /
    • pp.51-60
    • /
    • 2020
  • This study addresses the modeling of a bi-directional outlet variable swash plate type axial piston pump with two EPPR valves and an analysis of the response characteristics to the angle control of that pump. In this paper, the combination of the EPPR valve and double rod type piston is referred to as the EPPR regulator. The EPPR regulator is compact and inexpensive, and has good responsiveness. Under actual pump operating conditions, because of the various external conditions of the pump, inertia is applied to the swash plate, generating the tilting torque. Also, the tilting torque can delay or shorten the response characteristics of the regulator. So we validated them through the analysis using SimulationX and these results allow users to freely integrate the EPPR regulator into the desired system.

Time-dependent and inelastic behaviors of fiber- and particle hybrid composites

  • Kim, Jeong-Sik;Muliana, Anastasia
    • Structural Engineering and Mechanics
    • /
    • 제34권4호
    • /
    • pp.525-539
    • /
    • 2010
  • Polymer matrix composites are widely used in many engineering applications as they can be customized to meet a desired performance while not only maintaining low cost but also reducing weight. Polymers can experience viscoelastic-viscoplastic response when subjected to external loadings. Various reinforcements and fillers are added to polymers which bring out more complexity in analyzing the timedependent response. This study formulates an integrated micromechanical model and finite element (FE) analysis for predicting effective viscoelastic-viscoplastic response of polymer based hybrid composites. The studied hybrid system consists of unidirectional short-fiber reinforcements and a matrix system which is composed of solid spherical particle fillers dispersed in a homogeneous polymer constituent. The goal is to predict effective performance of hybrid systems having different compositions and properties of the fiber, particle, and matrix constituents. A combined Schapery's viscoelastic integral model and Valanis's endochronic viscoplastic model is used for the polymer constituent. The particle and fiber constituents are assumed linear elastic. A previously developed micromechanical model of particle reinforced composite is first used to obtain effective mechanical properties of the matrix systems. The effective properties of the matrix are then integrated to a unit-cell model of short-fiber reinforced composites, which is generated using the FE. The effective properties of the matrix are implemented using a user material subroutine in the FE framework. Limited experimental data and analytical solutions available in the literatures are used for comparisons.

The study of frictional damper with various control algorithms

  • Mirtaheri, Masoud;Samani, Hamid Rahmani;Zandi, Amir Peyman
    • Earthquakes and Structures
    • /
    • 제12권5호
    • /
    • pp.479-487
    • /
    • 2017
  • Frictional dampers are used in structural engineering as means of passive control. Meanwhile, frictional damper shave a disadvantage compared to viscous rivals since the slippage force must be exceeded to activate the device, and cannot be ideal full range of possible events. The concept of semi-active control is utilized to overcome this shortcoming. In this paper, a new semi-active frictional damper called Smart Adjustable Frictional (SAF) damper is introduced. SAF damper consists of hydraulic, electronic units and sensors which are all linked with an active control discipline. SAF acts as a smart damper which can adapt its slippage threshold during a dynamic excitation by measuring and controlling the structural response. The novelty of this damper is, while it controls the response of the structure in real time with acceptable time delay. The paper also reports on the results of a series of experiments which have been performed on SAF dampers to obtain their prescribed hysteretic behavior for various control algorithms. The results show that SAF can produce the desired slippage load of various algorithms in real time. Numerical models incorporating control simulations are also made to obtain the hysteretic response of the system which agrees closely with test results.

Robust Fuzzy Logic Current and Speed Controllers for Field-Oriented Induction Motor Drive

  • El-Sousy, Fayez F.M.;Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • 제3권2호
    • /
    • pp.115-123
    • /
    • 2003
  • This paper presents analysis, design and simulation for the indirect field orientation control (IFOC) of induction machine drive system. The dynamic performance of the IFOC under nominal and detuned parameters of the induction machine is established. A conventional proportional plus integral-derivative (PI-D) two-degree-of-freedom controller (2DOFC) is designed and analysed for an ideal IFOC induction machine drive at nominal parameters with the desired dynamic response. Varying the induction machine parameters causes a degredation in the dynamic response for disturbance rejection and tracking performance with PI-D 2DOF speed controller. Therefore, conventional controllers can nut meet a wide range of speed tracking performance under parameter variations. To achieve high- dynamic performance, a proposed robust fuzzy logic controllers (RFLC) for d-axis rotor flux, d-q axis stator currents and rotor speed have been designed and analysed. These controllers provide robust tracking and disturbance rejection performance when detuning occurres and improve the dynamic behavior. The proposed REL controllers provide a fast and accurate dynamic response in tracking and disturbance rejection characteristics under parameter variations. Computer simulation results demonstrate the effectiveness of the proposed REL controllers and a robust performance is obtained fur IFOC induction machine drive system.

A Hybrid Active Queue Management for Stability and Fast Adaptation

  • Joo Chang-Hee;Bahk Sae-Woong;Lumetta Steven S.
    • Journal of Communications and Networks
    • /
    • 제8권1호
    • /
    • pp.93-105
    • /
    • 2006
  • The domination of the Internet by TCP-based services has spawned many efforts to provide high network utilization with low loss and delay in a simple and scalable manner. Active queue management (AQM) algorithms attempt to achieve these goals by regulating queues at bottleneck links to provide useful feedback to TCP sources. While many AQM algorithms have been proposed, most suffer from instability, require careful configuration of nonintuitive control parameters, or are not practical because of slow response to dynamic traffic changes. In this paper, we propose a new AQM algorithm, hybrid random early detection (HRED), that combines the more effective elements of recent algorithms with a random early detection (RED) core. HRED maps instantaneous queue length to a drop probability, automatically adjusting the slope and intercept of the mapping function to account for changes in traffic load and to keep queue length within the desired operating range. We demonstrate that straightforward selection of HRED parameters results in stable operation under steady load and rapid adaptation to changes in load. Simulation and implementation tests confirm this stability, and indicate that overall performances of HRED are substantially better than those of earlier AQM algorithms. Finally, HRED control parameters provide several intuitive approaches to trading between required memory, queue stability, and response time.

STATCOM을 사용한 다기 전력 계통의 버스 전압 조절을 위한 모델 기반 PID 제어기 설계 (Innovative Model-Based PID Control Design for Bus Voltage Regulation with STATCOM in Multi-Machine Power Systems)

  • 김석균;이영일;송화창;김정수
    • 제어로봇시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.299-305
    • /
    • 2013
  • The complexity and severe nonlinearity of multi-machine power systems make it difficult to design a control input for voltage regulation using modern control theory. This paper presents a model-based PID control scheme for the regulation of the bus voltage to a desired value. To this end, a fourth-order linear system is constructed using input and output data obtained using the TSAT (Transient Security Assessment Tool); the input is assumed to be applied to the grid through the STATCOM (STATic synchronous COMpensator) and the output from the grid is a bus voltage. On the basis of the model, it is identified as to which open-loop poles of the system make the response to a step input oscillatory. To reduce this oscillatory response effectively, a model-based PID control is designed in such a way that the oscillatory poles are no longer problematic in the closed loop. Simulation results show that the proposed PID control dampens the response effectively.

Planning of alternative countermeasures for a station blackout at a boiling water reactor using multilevel flow modeling

  • Song, Mengchu;Gofuku, Akio
    • Nuclear Engineering and Technology
    • /
    • 제50권4호
    • /
    • pp.542-552
    • /
    • 2018
  • Operators face challenges to plan alternative countermeasures when no procedure exists to address the current plant state. A model-based approach is desired to aid operators in acquiring plant resources and deriving response plans. Multilevel flow modeling (MFM) is a functional modeling methodology that can represent intentional knowledge about systems, which is essential in response planning. This article investigates the capabilities of MFM to plan alternatives. It is concluded that MFM has a knowledge capability to represent alternative means that are designed for given ends and a reasoning capability to identify alternative functions that can causally influence the goal achievement. The second capability can be applied to find originally unassociated means to achieve a goal. This is vital in a situation where all designed means have failed. A technique of procedure synthesis can be used to express identified alternatives as a series of operations. A case of station blackout occurring at the boiling water reactor is described. An MFM model of a boiling water reactor is built according to the analysis of goals and functions. The accident situations are defined by the model, and several alternative countermeasures in terms of operating procedures are generated to achieve the goal of core cooling.

The response of plants growing in a landfill in the Philippines towards cadmium and chromium and its implications for future remediation of metal-contaminated soils

  • Nazareno, Patricia Anne G.;Buot, Inocencio E. Jr.
    • Journal of Ecology and Environment
    • /
    • 제38권2호
    • /
    • pp.123-131
    • /
    • 2015
  • During several visits to the Cebu City landfill in the Philippines, plants were observed growing within the area, including on top of the garbage piles. Studying the response of these plants is important in assessing which can be used in remediating metal contaminated soils. This study aimed to determine whether the plants in the Cebu City landfill excluded or accumulated cadmium (Cd) and chromium (Cr) in the plant tissues. The floristic composition of the landfill was analyzed prior to the sample collection. The samples were acid-digested before the desired elements were measured using atomic absorption spectrophotometry (AAS). The Cd and Cr concentrations in the plant root-zone soil were also measured using AAS. The results indicated that the landfill substrate was generally acidic based on the results of the pH measurement. Of the 32 plant species sampled, Cyperus odoratus showed potential for Cd uptake and internal transfer; Cenchrus echinatus, Vernonia cinerea and Terminalia catappa for Cr uptake, and Cynodon dactylon for Cr internal transfer. The plants in the landfill differed in their response towards the heavy metals. To confirm the behavior of C. odoratus towards Cd, and C. echinatus, C. dactylon, V. cinerea, and T. catappa towards Cr, controlled experiments are recommended, as the plant samples analyzed were collected from the field.