• Title/Summary/Keyword: Designated shellfish production area

Search Result 5, Processing Time 0.019 seconds

Evaluation of the Bacteriological Safety for the Shellfish Growing Area in Hansan.Geojeman, Korea (한산.거제만해역 패류양식장에 대한 세균학적 위생안전성 평가)

  • Ha, Kwang-Soo;Shim, Kil-Bo;Yoo, Hyun-Duk;Kim, Ji-Hoe;Lee, Tae-Seek
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.5
    • /
    • pp.449-455
    • /
    • 2009
  • In Hansan Geojeman area, 2,050 ha of shellfish growing area has been designated as shellfish production area for export. The main shellfish species from the designated area is oysters. For the sanitary management of the designated area established in Hansan Geojeman area, bacteriological examination of sea water and shellfish at the sampling stations inside and outside of the designated area were performed from January 2006 to December 2008. The range of fecal coliform of 756 sea water samples at 21 stations located in the designated area were <1.8~>1,600 MPN/100mL. And the range of geometric mean and the estimated 90th percentile of fecal coliform were 1.8~2.9 and 2.7~15.8 MPN/100mL, respectively. Sanitary conditions of the current designated area in Hansan Geojeman meets the required standards of the Fisheries Product Quality Control and National Shellfish Sanitation Program (NSSP, USA) criteria for the approved area. Also, the sanitary status of the shellfish harvested from the designated area met the Korean Shellfish Sanitation Program (KSSP) fecal coliform criterion (<230 MPN/100g). And the human pathogen such as Salmonella spp. and Shigella spp. were not detected from the examined shellfish samples.

Evaluation of Bacteriological Safety for the Shellfish Growing Waters in Taean Area, Korea (충남 태안 패류생산해역에서의 세균학적 위생안정성 평가)

  • Song, Ki-Cheol;Lee, Doo-Seog;Shim, Kil-Bo;Lim, Chi-Won;Mog, Jong-Su;Byun, Han-Seok;Park, Young-Je;Cho, Ki-Chae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.3
    • /
    • pp.155-162
    • /
    • 2008
  • The seawater in the Taean area was surveyed to evaluate the conditions of the bay and compliance with the bacteriological criteria for a designated area for shellfish production for export. Samples of seawater were collected monthly at 34 sampling stations established in the survey area from January 2002 to December 2004. The bacterial density in the coastal area close to a pollution source located to the northeast of the survey area was higher than in the open sea to the west. The bacteriological counts in the water did not change with 16.5mm of rainfall, but increased abruptly after 65.4mm of rainfall. The total coliform and fecal coliform most probable numbers (MPNs) of 1,224 seawater samples in the survey area were <1.8-2,400 and <1.8-790 MPN/100 mL, respectively. The geometric mean and estimated 90th percentile of total coliforms were 1.9-3.4 and 2.7-26.3 MPN/100mL, respectively, and for fecal coliforms were <1.8-2.6 and 1.8-12.0 MPN/100mL, respectively. The bacteriological water quality in the Taean seawater area met the National Shellfish Sanitation Program criteria for an approved area and the Korea Shellfish Sanitation Program criteria for a designated area for shellfish production for export.

Evaluation of Bacteriological Safety for the Shellfish growing Sea waters in Seocheon Area, Korea (충남 서천 패류생산해역에서의 세균학적 위생안전성 평가)

  • Byun, Han-Seok;Song, Ki-Cheol;Lee, Doo-Seog;Shim, Kil-Bo;Lim, Chi-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • A Sanitary survey in an Important shellfish-growing area of Biin Bay in Seocheon-gun Korea, was conducted to evaluate bay conditions and compliance with the bacteriological criteria for areas designated for the production of shellfish for export. Seawater samples were collected monthly at 55 sampling stations established in the survey area from January 2006 to December 2008. Bacteriological water quality did not change in response to a small rainfall (10.0 mm), but it increased abruptly in response to rainfall to 62.5 mm The most probable number (MPN) value for total coliforms and fecal coliforms in 1, 980 seawater samples ranged from <1.8 to >1, 600 MPN/100mL and from <1.8 to 330 MPN/100mL, respectively. The geometric mean and estimated $90^{th}$ percentile value for total coliforms ranged from 2.0 to 10.3 MPN/100mL and from 7.0 to 42.6 MPN/100mL respectively. The geometric mean and estimated percentile value for fecal coliforms ranged from 1.8 to 4.0 MPN/100mL and from 1.9 to 18.3 MPN/100mL, respectively. Accordingly, the bacteriological water quality of Biin Bay met the National Shellfish Sanitation Program (NSSP) and Korea Shel1fish Sanitation Program(KSSP) criteria for areas designated for shellfish production for export in Korea.

Sustainability Evaluation for Shellfish Production in Gamak Bay Based on the Systems Ecology 1. EMERGY Evaluation for Shellfish Production in Gamak Bay (시스템 생태학적 접근법에 의한 가막만 패류생산의 지속성 평가 1. 가막만 패류양식의 에머지 평가)

  • Oh, Hyun-Taik;Lee, Suk-Mo;Lee, Won-Chan;Jung, Rae-Hong;Hong, Suk-Jin;Kim, Nam-Kook;Tilburg, Charles
    • Journal of Environmental Science International
    • /
    • v.17 no.8
    • /
    • pp.841-856
    • /
    • 2008
  • This research outlines a new method for evaluation of shellfish production in Gamak Bay based on the concept of EMERGY. Better understanding of those environmental factors influencing oyster production and the management of oyster stocks requires the ability to assess the real value of environmental sources such as solar energy, river, tide, wave, wind, and other physical mechanisms. In this research, EMERGY flows from environment sources were 76% for shellfish aquaculture in Gamak Bay. EMERGY yield ratio, Environmental Loading Ratio, and Sustainability Index were 4.26, 0.31 and 13.89, respectively. Using the Emergy evaluation data, the predicted maximum shellfish aquaculture production in Gamak Bay and the FDA (Food and Drug Administration, U.S.) designated area in Gamak Bay were 10,845 ton/y and 7,548 ton/yr, respectively. Since the predicted shellfish production was approximately 1.3 times more than produced shellfish production in 2005, the carrying capacity of Gamak Bay is estimated to be 1.3 times more than the present oyster production.

Bioaccumulation of Heavy Metals in the Mussel Mytilus galloprovincialis in the Changseon area, Korea, and Assessment of Potential Risk to Human Health

  • Mok, Jong Soo;Yoo, Hyun Duk;Kim, Poong Ho;Yoon, Ho Dong;Park, Young Cheol;Kim, Ji Hoe;Kwon, Ji Young;Son, Kwang Tae;Lee, Hee Jung;Ha, Kwang Soo;Shim, Kil Bo;Jo, Mi Ra;Lee, Tae Seek
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.3
    • /
    • pp.313-318
    • /
    • 2014
  • From 2008 to 2013, the mussel Mytilus galloprovincialis were collected from a major area of mussel production (Changseon area), which is a designated shellfish-cultivating area for export, located on the southern coast of Korea. The samples were analyzed for mercury (Hg) using a direct Hg analyzer and for other metals, such as cadmium (Cd), lead (Pb), arsenic (As), chromium, copper, nickel, and zinc, using inductively coupled plasma mass spectrometry. The concentrations and bioaccumulation of the heavy metals were determined, and a potential risk assessment was conducted to evaluate their hazards towards human consumption. The concentration and bioaccumulation ratio of Cd were the highest of the three hazardous metals (Cd, Pb, and Hg). The concentrations of hazardous metals in all samples were within the limits set by Korea and other countries. The estimated dietary intake (EDI) was compared to the provisional tolerable daily intake (PTDI) adopted by the Joint FAO/WHO Expert Committee on Food Additives and the U.S. Environmental Protection Agency. The EDIs of all heavy metals tested for mussel samples ranged from 0.01 to 4.99% of the PTDI; the highest value was measured for As. The hazard index (HI) can be used to assess the risk of heavy metal consumption associated with contaminated food. The HI for all samples was far less than 1.0, which indicates that the mussels produced in the Changseon area do not represent an appreciable hazard to humans and are fit for consumption.