• Title/Summary/Keyword: Design-concrete

Search Result 6,229, Processing Time 0.033 seconds

Use of Neural Networks on Concrete Mix Design (콘크리트의 배합설계에 있어서 신경망의 이용)

  • 오주원;이종원;이인원
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.2
    • /
    • pp.145-151
    • /
    • 1997
  • In concrete mix design we need the informations of the codes, the specifications, and the experiences of experts. However we can't consider all factors regarding concrete mix design. The final acceptance depends on concrete quality control test results. In this process we meet the uncertainties of materials. temperature, site environmental situations, personal skillfulness. and errors in calculations and testing process. Then the mix design adjustments must be made. Concrete mix design and adjustments arc somewhat complicated, time-consuming. and uncertain tasks. In this paper, as a tool to minimize the uncertainties and errors the neural network is applied to the concrete mix design. Input data to train and test the neural network are obtained numerically from the results of design following the concrete standard specifications of Korea. The 28-days compressive strengths which are variate according to the uncertainties and errors are considered. The results show that neural networks have a strong potential as a tool for concrete mix design.

Design curves for prestressed concrete rectangular beam sections based on BS 8110

  • Subramaniam, Kolluru V.L.;Sinha, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.6
    • /
    • pp.555-567
    • /
    • 1995
  • Design curves have been prepared for prestressed rectangular beam section based on BS 8110, for determining area of steel for any given cross section, for stresses in concrete and steel and for the design moment. The design moment and the area of steel have been expressed in dimensionless form in terms of cross sectional dimensions and the characteristic strength of concrete. The choice and combination of design parameters result in considerably less number of curves as aid for design of rectangular prestressed beam sections, than those reported in CP 110 (Part 3).

Feasibility Study of AASHTO86 Design Method for Bonded Concrete Overlay (AASHTO86 접착식 콘크리트 덧씌우기 설계법의 타당성 연구)

  • Park, Jong Won;Kim, Young Kyu;Han, Seung Hwan;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.47-55
    • /
    • 2013
  • PURPOSES : This study aimed to evaluate the feasibility of AASHTO86 design method for Bonded Concrete Overlay. METHODS : The Feasibility of AASHTO86 design method for Bonded Concrete Overlay is investigated based on the following study : i) Sensitivity analysis of designed service life of Bonded Concrete Overlay by major design input for AASHTO86 guide. ii) Comparison of actual Bonded Concrete Overlay life and predicted Bonded Concrete Overlay life by AASHTO86. iii) Finding the stress component influence the potential distress of Bonded Concrete Overlay based on 3-d FEM analysis. iv) Exploring the limitation of AASHTO86 in the aspect of design input. RESULTS : Sensitivity analysis showed that the condition of existing pavement significantly on the Bonded Concrete Overlay life. Also the overlay thickness affect the Bonded Concrete Overlay life. The comparison of actual Bonded Concrete Overlay life and predicted Bonded Concrete Overlay life showed relatively good agreement when the early distress sections are excluded in comparison. Bonding stress occurred at the interface may be larger than the bond strength used in the specification of Bonded Concrete Overlay construction. CONCLUSIONS : Bonded Concrete Overlay life predicted by the AASHTO86 may not be reliable. Number of points to improve the reliability in the design of Bonded Concrete Overlay are suggested in this study.

Reasonable Optimum Design of Agricultural Reinforced Concrete Structure - Superstructures of Aqueduct - (농업용 철근콘크리트 구조물의 합리적인 최적설계 -수로교 상부구조물-)

  • Kim, Jong-Ok;Park, Chan-Gi;Cha, Sang-Sun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.19-26
    • /
    • 2010
  • This study was conducted to find out the reasonable optimum design method of agricultural reinforced concrete structures. Selected design variables are the dimension of concrete section, reinforced steel area, and objective function is formulated by cost function. To test the reliability, efficiency, possibility of application and reasonability of optimum design method, both continuous optimization method and mixed-discrete optimization method were applied to the design of reinforced concrete superstructure of aqueduct and application results were discussed. It is proved that mixed-discrete optimization method is more reliable, efficient and reasonable than continuous optimization method for the optimum design of reinforced concrete agricultural structures.

Improving design limits of strength and ductility of NSC beam by considering strain gradient effect

  • Ho, J.C.M.;Peng, J.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.185-207
    • /
    • 2013
  • In flexural strength design of normal-strength concrete (NSC) beams, it is commonly accepted that the distribution of concrete stress within the compression zone can be reasonably represented by an equivalent rectangular stress block. The stress block it governed by two parameters, which are normally denoted by ${\alpha}$ and ${\beta}$ to stipulate the width and depth of the stress block. Currently in most of the reinforced concrete (RC) design codes, ${\alpha}$ and ${\beta}$ are usually taken as 0.85 and 0.80 respectively for NSC. Nonetheless, in an experimental study conducted earlier by the authors on NSC columns, it was found that ${\alpha}$ increases significantly with strain gradient, which means that larger concrete stress can be developed in flexure. Consequently, less tension steel will be required for a given design flexural strength, which improves the ductility performance. In this study, the authors' previously proposed strain-gradient-dependent concrete stress block will be adopted to produce a series of design charts showing the maximum design limits of flexural strength and ductility of singly-and doubly-NSC beams. Through the design charts, it can be verified that the consideration of strain gradient effect can improve significantly the flexural strength and ductility design limits of NSC beams.

A Study for Automation of Lightweight Concrete Mix Design (경량 콘크리트 배합설계의 자동화를 위한 연구)

  • Choi, Jae-Jin;Song, Jin-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.329-330
    • /
    • 2010
  • For the computerization of structural lightweight concrete mix design, mix design theories of ACI211.2-98(Standard Practice for Selecting Proportions for Structural Lightweight Concrete) are investigated and the mix design process is mathematized by Table Curve 2D and 3D software of Jandel company.

  • PDF

Optimization of Prestressed Concrete Beam Section (프리스트레스트 콘크리트 보 단면의 최적설계)

  • 조선규;최외호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.91-101
    • /
    • 2000
  • As the computer related technology evolves a study for a practical use of real structure as well as its hteory for optimum design has been greatly advanced. But the study on optimum design of pre-stressed concrete beam(PSC-beam) bridge for the construction of national roads and highways in Korea is not sufficient. Since a standard section for the PSC-beam is proposed, it is practically used in designing the PSC-beam. It is noticed that the section using the current standard PSC-beam design to be an over-designed with its surplus safety factor. Therefore, it is necessary to consider economical PSC-beam section which automatically satisfies all requirement of design specifications. Thus, in this study, the optimum design methods of PSC-beam are carried out using the gradient-based search method and global search method. As a result of the optimum design method, it was confirmed that the design of PSC-beam has a serious properties to non-linearity and discontinuity. And the section that in economical and efficinet design methods than the current standard design method is proposed.

Developing Design Process of 3D Printing Concrete Mix Proportion (3D 프린팅 콘크리트 배합설계 프로세스에 관한 연구)

  • Chen, Chao;Park, Yoo-Na;Yoo, Seung-Kyu;Bae, Sung-Chu;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.7 no.3
    • /
    • pp.1-10
    • /
    • 2017
  • 3D concrete printing technology builds structural components layer-by-layer with concrete extruded through a nozzle without using forms. This technology can simplify construction processes by optimizing design flexibility, construction time, and cost. Furthermore, the 3D printing technology is easy to make an irregularly shaped and function embedded building(or object) which is difficult to be constructed by conventional construction method. However, the 3D printing concrete is not suitable for current commercial standard and the material itself. It is also difficult to apply it to the construction site due to the lack of initial strength and the nozzle which is clogged during the process. The research of mix proportion design process for 3D printing concrete which differs from the conventional concrete is necessary in order to solve the problems. This paper aims to calculate the 3D printing concrete mix proportion design process based on the mix materials and performance information derived from the previous researches. Therefore, the usage variation range, mutual influence relationship, and the importance priority of the mix proportion are analyzed. Based on this results, the basic design process of 3D printing concrete which contains planning design phase, basic design phase and validating performance phase is suggested. We anticipate to confirm applicability verification about the actual production by referring to this 3D printing concrete mix proportion study. In the future, this study can be utilized for blueprint of the 3D printing concrete mix proportion.

A study on the reduction of concrete lining re-bar according to the tunnel design factors (터널 설계인자 평가에 따른 콘크리트 라이닝 철근량 절감에 관한 연구)

  • Kang, Si-On;Lim, Young-Duck;Shin, Jeong-Ho;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.197-209
    • /
    • 2018
  • This paper presents a study on the reduction of concrete lining re-bar according to the tunnel design factors. The design of the concrete lining increases the reinforcing re-bar according to the application of excessive load, and the economical efficiency is reduced. In order to improve the economical efficiency of tunnel construction, rational standards are required for the design factors of concrete lining. Therefore, this research analyzed the characteristics and problems of the design factors applied to the design of concrete lining. Also, the economical review of the concrete lining for design factor application was compared with the amount of reinforcing re-bar calculated from the section design using numerical analysis. The results show that the amount of re-bar is varied according to the design factors. That is, the required amount for re-bar in the tunnel concrete lining could be reduced in the design stage. The results of this study may be useful for economic design of concrete lining in the future.

Optimum design of axially symmetric cylindrical reinforced concrete walls

  • Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.361-375
    • /
    • 2014
  • The main aim of this paper is to investigate the relationship between thickness and height of the axially symmetric cylindrical reinforced concrete (RC) walls by the help of a meta-heuristic optimization procedure. The material cost of the wall which includes concrete, reinforcement and formwork, was chosen as objective function of the optimization problem. The wall thickness, compressive strength of concrete and diameter of reinforcement bars were defined as design variables and tank volume, radius and height of the wall, loading condition and unit cost of material were defined as design constants. Numerical analyses of the wall were conducted by using superposition method (SPM) considering ACI 318-Building code requirements for structural concrete. The optimum wall thickness-height relationship was investigated under three main cases related with compressive strength of concrete and density of the stored liquid. According to the results, the proposed method is effective on finding the optimum design with minimum cost.