• Title/Summary/Keyword: Design to cost

Search Result 8,039, Processing Time 0.052 seconds

Cost prediction model of Public Multi-housing Projects in Schematic Design Phase (공공아파트 계획설계단계에서의 공사비 예측모델)

  • Kwon, Ho-Suk;Moon, Hyun-Seok;Lee, Sung-Kyun;Hong, Tae-Hoon;Koo, Kyo-Jin;Hyun, Chang-Taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.3
    • /
    • pp.65-74
    • /
    • 2008
  • Public institutions recognize the importance of cost management from the planning stage but they do not have an organized construction cost estimation and management system. Thus, at the stage of planning a new public construction project and estimating the cost, those in charge of budgeting estimate construction cost based on existing data and experiences, compare construction cost estimated after the basic design stage and the execution design stage with budgets, and then decide whether to continue the project or change the design according to the budgets. Therefore, we would develop the cost prediction model through regression analysis that can predict construction cost in Schematic Design Phase of the Public Multi-Family housing. Accordingly, if public institutions have a construction cost prediction model and management system that can estimate the optimum construction cost, they can make and execute budgets in a more efficient way than they do at present.

Dimension-Tolerance Design with Cost Factors (비용요소를 고려한 치수공차설계)

  • 강병철;윤원영
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.172-191
    • /
    • 1998
  • In this paper, dimension tolerance design for components is studied. Three cost factors are considered: machining cost, rework cost, and loss related to product quality which is affected by the tolerances of components. We propose a procedure to determine the optimal tolerances of components and a, pp.y the procedure to design the tolerances of fine motion stage in semicoduct machine. We compare the proposed procedure with the existing model for determining tolerance economically.

  • PDF

Cost Estimation System for Design Evalution (설계평가를 위한 제조비용산정 시스템)

  • 박홍석;이규봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.281-284
    • /
    • 2000
  • For estimation manufacturing cost during the early design stage, desingers have to know compositon of manufacturmg cost. Manufacturing cost is summalion of material cost and processmg cost. To be able to control the manufacturmg cost, it is necessary to estimate the costs adequately and to store the cost data in a generic way. a generic system, which is the basis for the control of the production costs, takes into account geometric information, material information, process information and production planning information Manufacturing cost is summation of material cost and processing cost.

  • PDF

A Study on the Analysis and Design of IT Cost Model Using an Ethnographic Research (Ethnographic Research를 이용한 IT Cost 모델 분석 및 설계)

  • Lee Jae-Beom;Jeong Seung-Ryul;Lee Hak-Seon
    • The Journal of Information Systems
    • /
    • v.15 no.3
    • /
    • pp.107-129
    • /
    • 2006
  • The purpose of this study is to provide and validate an IT cost model hi which we link among cost center, cost object and flexible cost driver. in order to accomplish this purpose, this study utilizes ethnographic research methodology. At first we develop the cost model where the flexible cost driver is the distribution basis of overhead cost. For each cost driver, unit cost management model is also proposed. Then we employ the structured design methodology to validate the model. Based on the IT Cost requirements of a case company, the IT cost system was designed and developed for its test. The result shows the model we developed in this study is appropriate for managing IT resources and further, can be used as a reference model for calculating chargeback rates of other departments and IT budget of IT department.

  • PDF

Numerical experimentation for the optimal design for reinforced concrete rectangular combined footings

  • Velazquez-Santilla, Francisco;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Sandoval-Rivas, Ricardo
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.49-69
    • /
    • 2018
  • This paper shows an optimal design for reinforced concrete rectangular combined footings based on a criterion of minimum cost. The classical design method for reinforced concrete rectangular combined footings is: First, a dimension is proposed that should comply with the allowable stresses (Minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity withstand by the soil); subsequently, the effective depth is obtained due to the maximum moment and this effective depth is checked against the bending shear and the punching shear until, it complies with these conditions, and then the steel reinforcement is obtained, but this is not guaranteed that obtained cost is a minimum cost. A numerical experimentation shows the model capability to estimate the minimum cost design of the materials used for a rectangular combined footing that supports two columns under an axial load and moments in two directions at each column in accordance to the building code requirements for structural concrete and commentary (ACI 318S-14). Numerical experimentation is developed by modifying the values of the rectangular combined footing to from "d" (Effective depth), "b" (Short dimension), "a" (Greater dimension), "${\rho}_{P1}$" (Ratio of reinforcement steel under column 1), "${\rho}_{P2}$" (Ratio of reinforcement steel under column 2), "${\rho}_{yLB}$" (Ratio of longitudinal reinforcement steel in the bottom), "${\rho}_{yLT}$" (Ratio of longitudinal reinforcement steel at the top). Results show that the optimal design is more economical and more precise with respect to the classical design. Therefore, the optimal design presented in this paper should be used to obtain the minimum cost design for reinforced concrete rectangular combined footings.

Structural Design and Cost Evaluation of Double Hull Bulk Carrier (이중선체 벌크화물선의 선체구조설계 및 경제성 검토)

  • Song, H.C.;Yum, J.S.;Kim, B.I.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.106-111
    • /
    • 2005
  • After many casualties of conventional bulk carriers in recent years, a double hull bulk carrier was proposed to enhance the structural safety of a side shell and a transverse bulkhead. In this paper, two alternative structural designs of a double hull bulk carrier were carried out based on the Lloyd's rule. One has the double sided hull with longitudinal stiffeners and the other has that with a girder. The final structural design was examined in comparison with an existing single hull bulk carrier from the viewpoints of cargo hold capacity and the increases of weight and construction cost. Generally, the construction cost of a ship consists of the costs of material, labor and overhead cost. But, in this study, the relative construction cost concept was introduced to compare the economical validity more precisely. In this concept, fixed overhead cost is excluded in the assessment of construction cost, and only the variable overhead cost is added up to labor cost. As the result of this study, a double hull bulk carrier can be constructed within 1% increase of weight and construction cost.

  • PDF

Life Cycle Cost Optimization Considering Maintenance History of Bridge Beck and Girders (바닥판과 주형의 유지보수 이력을 고려한 LCC 최적설계)

  • Ahn Ye-Jun;Lee Hyun-Sub;Shin Yung-Seok;Park Jang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.719-726
    • /
    • 2005
  • The optimal design was performed for the bridge superstructure composed of steel box girders and concrete deck considering life cycle cost. The service life of the superstructure was estimated, after load carry capacity curves for steel girder and concrete deck were derived on the basis of condition grade curves and maintenance histories. The object function was determined as life cycle cost, including initial cost, total maintenance cost, disposal cost and user cost, for a period of the estimated service life. The optimal design of the superstructure was performed for the various service lifes. The annual costs were used to compare calculated results and to get the most economical design. Also this paper presents reasonable idea for the use of user cost with uncertainty.

  • PDF

Life-Cycle Cost Optimization for Steel Box Girder Bridges (강상자형교의 생애주기비용 최적설계)

  • 조효남;민대홍;권우성;정기영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.128-136
    • /
    • 2001
  • This paper presents an optimum deck and girder system design for minimizing the life-cycle cost (LU) of steel box girder bridges. The problem of optimum LCC design of steel box girder bridges is formulated as that of minimization of the expected total LCC that consists of initial cost, maintenance cost, expected retrofit costs for strength, deflection, and crack. To demonstrate the effect of LCC optimum design of steel box girder bridges, the LCC optimum design is compared with conventional design method for steel box girder bridges design. From the numerical investigations, it may be positively stated that the optimum design of steel box girder bridges based on LCC will lead to more rational, economical and safer design.

  • PDF

Optimal Design of Water Distribution Networks using the Genetic Algorithms: (I) -Cost optimization- (Genetic Algorithm을 이용한 상수관망의 최적설계: (I) -비용 최적화를 중심으로-)

  • Shin, Hyun-Gon;Park, Hee-Kyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.1
    • /
    • pp.70-80
    • /
    • 1998
  • Many algorithms to find a minimum cost design of water distribution network (WDN) have been developed during the last decades. Most of them have tried to optimize cost only while satisfying other constraining conditions. For this, a certain degree of simplification is required in their calculation process which inevitably limits the real application of the algorithms, especially, to large networks. In this paper, an optimum design method using the Genetic Algorithms (GA) is developed which is designed to increase the applicability, especially for the real world large WDN. The increased to applicability is due to the inherent characteristics of GA consisting of selection, reproduction, crossover and mutation. Just for illustration, the GA method is applied to find an optimal solution of the New York City water supply tunnel. For the calculation, the parameter of population size and generation number is fixed to 100 and the probability of crossover is 0.7, the probability of mutation is 0.01. The yielded optimal design is found to be superior to the least cost design obtained from the Linear Program method by $4.276 million.

  • PDF

Comparative numerical analysis for cost and embodied carbon optimisation of steel building structures

  • Eleftheriadis, Stathis;Dunant, Cyrille F.;Drewniok, Michal P.;Rogers-Tizard, William;Kyprianou, Constantinos
    • Advances in Computational Design
    • /
    • v.3 no.4
    • /
    • pp.385-404
    • /
    • 2018
  • The study investigated an area of sustainable structural design that is often overlooked in practical engineering applications. Specifically, a novel method to simultaneously optimise the cost and embodied carbon performance of steel building structures was explored in this paper. To achieve this, a parametric design model was developed to analyse code compliant structural configurations based on project specific constraints and rigorous testing of various steel beam sections, floor construction typologies (precast or composite) and column layouts that could not be performed manually by engineering practitioners. Detailed objective functions were embedded in the model to compute the cost and life cycle carbon emissions of the different material types used in the structure. Results from a comparative numerical analysis of a real case study illustrated that the proposed optimisation approach could guide structural engineers towards areas of the solution space with realistic design configurations, enabling them to effectively evaluate trade-offs between cost and carbon performance. This significant contribution implied that the optimisation model could reduce the time required for the design and analysis of multiple structural configurations especially during the early stages of a project. Overall, the paper suggested that the deployment of automated design procedures can enhance the quality as well as the efficiency of the optimisation analysis.