• Title/Summary/Keyword: Design thickness

Search Result 4,169, Processing Time 0.03 seconds

Numerical Analysis on the Design Variables and Thickness Deviation Effects on Warpage of Substrate for FCCSP (FCCSP용 기판의 warpage에 미치는 설계인자와 두께편차 영향에 대한 수치적 해석)

  • Cho, Seunghyun;Jung, Hunil;Bae, Onecheol
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.57-62
    • /
    • 2012
  • In this paper, numerical analysis by finite element method, parameter design by the Taguchi method and ANOVA method were used to analyze about effect of design deviations and thickness variations on warpage of FCCSP substrate. Based on the computed results, it was known that core material in substrate was the most determining deviation for reducing warpage. Solder resist, prepreg and circuit layer were insignificant effect on warpage relatively. But these results meant not thickness effect was little importance but mechanical properties of core material were very effective. Warpage decreased as Solder resist and circuit layer thickness decreased but effect of prepreg thickness was conversely. Also, these results showed substrate warpage would be increased to maximum 40% as thickness deviation combination. It meant warpage was affected by thickness tolerance under manufacturing process even if it were met quality requirements. Threfore, it was strongly recommended that substrate thickness deviation should be optimized and controlled precisely to reduce warpage in manufacturing process.

Investigation of Slab Thickness Influence on Prestressing Design of Post-Tensioned Concrete Pavement (포스트텐션 콘크리트 포장 긴장 설계에 대한 슬래브 두께의 영향 분석)

  • Yun, Dong-Ju;Kim, Seong-Min;Bae, Jong-Oh
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.107-115
    • /
    • 2009
  • This study was conducted to investigate the effect of the slab thickness on the tensioning design and to determine the optimal slab thickness of the post-tensioned concrete pavement (PTCP). The tensile stresses due to the vehicle and environmental loads were obtained using a finite element analysis model and the tensioning stress was calculated employing an allowable flexural strength. The environmental loads of both the constant temperature gradient and the constant temperature difference between top and bottom of the slab were considered. The tensioning designs for various slab thicknesses were performed considering prestressing losses. The comparison results showed that generally as the thickness increased, the number of tendons became larger. Consequently, the design was not economical for a thicker slab thickness. Even though the number of tendons became smaller with an increase in the thickness under the small environmental load, a thicker PTCP slab was not economical because of a higher cost of concrete than that of steel. Therefore, the slab thickness should be kept in minimum within the construction available thicknesses.

  • PDF

Optimal Design of Two-Span Steel Box Girder Bridges by LRFD (LRFD에 의한 2경간 강박스형교 최적화 설계)

  • 국중식;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.173-180
    • /
    • 2001
  • In this study steel box girders used as main members of a two span continuous steel bridge, are optimally designed by a Load and Resistance Factor Design method(LRFD) using an numerical optimization method. The width, height, web thickness and flange thickness of the main girder are set as design variables, and light weight design is attempted by choosing the cross-sectional area as an object function. We studied the results of steel box girders and compared with those of 1-type girders. The main program is coded with C++ and connected with optimization modul ADS. which is coded with FORTRAN.

  • PDF

A Design Method of Reinforced Railway Roadbed by Geosynthetics (토목섬유로 보강된 철도노반의 설계기법)

  • 심재범;채영수
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.423-429
    • /
    • 1999
  • The design method of Geosynthetics reinforced Railway Roadbed that was developed in Germany in 1997 is presently putting into practice. This method insists that Railway Roadbed Thickness has to be measured by Frost and Bearing Capacity The Maximum Value from the above two measurements is the necessary Railway Roadbed Thickness. This design method has many kinds of advantage in economic, constructive aspect, and environmentalism. Recently a few Korean experts actively have researched on this area, but their results are not enough for proper design method. Ⅰ hope more complete study on this area will be progressed.

  • PDF

Weave Composition of the Patterned Silks Excavated from Lady Lee(from Hansan)'s Tomb - Focusing on the Satin Damask(緞) and Simple Gauze(紗)- (한산이씨 문직물저고리에 나타난 문양과 직물구성 - 단(緞)과 사(紗)를 중심으로 -)

  • Chang, In-Woo
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.15 no.4
    • /
    • pp.143-155
    • /
    • 2013
  • This study examined the motif, weave structure, fabric density, and thread thickness of the patterned silks excavated from the Lady Lee's Tomb to trace the weave composition of the 18th Century in Korea. Different weave compositions were adopted depending on the weave structure. Two weave structures appeared in these patterned silks : simple gauze and satin damask. In the case of simple gauze Jergori, all the components, Gil(bodice), Somae(Sleeve) had similar fabric density and thread thickness. On the other hand, the satin damask Jergoris was composed of the components of different fabric density and thread thickness. According to the fabric density and thread thickness, the motif sharpness of damask Jergori was represented in three different ways : smooth and clear, rough and clear, and rough and vague. This revealed that Lady Lee selected not only pattern but also fabric density and thread thickness in the design of damask Jergori.

  • PDF

Stress Analysis of the Spherical Satellite Propellant Tank With Respect to the Change of Location of the Lug and Tank Wall Thickness (지지부 위치와 벽면 두께변화에 따른 구형 인공위성 추진제 탱크의 강도해석)

  • 한근조;장우석;안성찬;심재준;전형용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.31-37
    • /
    • 1998
  • The structure of satellite consists of six parts which are control system, power system, thermal control system, remote measurement command system, propellant system and thrust system. In these parts, propellant system consists of propellant tank and thrust device. What we want to perform is optimum design to minimize the weight of propellant tank. In order to design optimal propellant tank, several parameters should be adopted from the tank geometry like the relative location of the lug and variation of the wall thickness. The analysis was executed by finite element analysis for finding optimal design parameters. The structure was divided into three parts consisting of the initial thickness zone, the transitional Bone, and the weak zone, whose effects on the pressure vessel strength was investigated. Finally the optimal lug location and the three zone thickness were obtained and the weight was compared with the uniform thickness vessel.

  • PDF

Minimum thickness of flat plates considering construction load effect

  • Hwang, Hyeon-Jong;Ma, Gao;Kim, Chang-Soo
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • In the construction of flat plate slabs, which are widely used for tall buildings but have relatively low flexural stiffness, serviceability problems such as excessive deflections and cracks are of great concern. To prevent excessive deflections at service load levels, current design codes require the minimum slab thickness, but the requirement could be unconservative because it is independent on loading and elastic modulus of concrete, both of which have significant effects on slab deflections. In the present study, to investigate the effects of the construction load of shored slabs, reduced flexural stiffness and moment distribution of early-age slabs, and creep and shrinkage of concrete on immediate and time-dependent deflections, numerical analysis was performed using the previously developed numerical models. A parametric study was performed for various design and construction conditions of practical ranges, and a new minimum permissible thickness of flat plate slabs was proposed satisfying the serviceability requirement for deflection. The proposed minimum slab thickness was compared with current design code provisions and numerical analysis results, and it agreed well with the numerical analysis results.

Development of a precision machining process for the outer cylinder of vacuum roll for film transfer (실험계획법을 통한 3.5인치 도광판의 두께 편차 최적화에 대한 연구)

  • Hyo-Eun Lee;Jong-Sun Kim
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.41-50
    • /
    • 2024
  • In this study, experimental design methods were used to derive optimal process conditions for improving the thickness uniformity of a 0.40 mm, 3.5 inch light guide panel. Process mapping and expert group analysis were used to identify factors that influence the thickness of injection molded products. The key factors identified were mold temperature, mold temperature, injection speed, packing pressure, packing time, clamp force, and flash time. Considering the resin manufacturer's recommended process conditions and the process conditions for similar light guide plates, a three-level range was selected for the identified influencing factors. L27 orthogonal array process conditions were generated using the Taguchi method. Injection molding was performed using these L27 orthogonal array to mold the 3.5 inch light guide plates. Thickness measurements were then taken, and the results were analyzed using the signal-to-noise ratio to maximize the CpK value, leading to the determination of the optimal process conditions. The thickness uniformity of the product was analyzed by applying the derived optimum process conditions. The results showed a 97.5% improvement in the Cpk value of 3.22 compared to the process conditions used for similar light guide plates.

Effect of Electrical Muscle Stimulation Belt for Abdominal Muscles Activation

  • Choi, Dayeong;Shin, Won-Seob
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.4
    • /
    • pp.444-449
    • /
    • 2021
  • Objective: The purpose of this study is to observe the change in the thickness of abdominal muscles when electrical muscle stimulation (EMS) is applied to the abdomen during rest and abdominal muscle exercise to investigate the effect of EMS applied to the abdomen on the superficial and deep muscles thickness. Design: Cross sectional design. Methods: Twenty healthy subjects participated in this study. Subjects were performed resting position, resting position with EMS, curl-up and curl-up with EMS. The electrode of the EMS belt is attached to the abdominal wall between the 12th rib and iliac crest. The thickness of abdominal muscles including rectus abdominis (RA), external oblique (EO), internal oblique (IO), and transverse abdominis (TrA) were captured in each position by ultrasound image during expiration. All subjects were performed four positions randomly. Data were analyzed using repeated ANOVA with the level of significance set at 𝛼=0.05. Results: The muscle thickness of RA, EO, IO and TrA were significantly different at each position (p<0.05). The thickness of all abdominal muscles increased significantly when curl-up than curl-up with EMS. Both RA and EO thickness were significantly increased at resting position than resting position and EMS were combined(p<0.05). But IO and TrA thickness were decreased at resting position when EMS were combined. Conclusions: The results suggest that EMS activates superficial abdominal muscles RA and EO. Therefore, abdominal strengthening exercise combined EMS can activate abdominal muscles and can be applied to various patients and rehabilitation in clinical practice.