• Title/Summary/Keyword: Design space exploration

Search Result 195, Processing Time 0.026 seconds

Design of a Fuzzy Controller Using the Parallel Architecture of Random Signal-based Learning (병렬형 랜덤 신호 기반 학습을 이용한 퍼지 제어기의 설계)

  • Han, Chang-Wook;Oh, Se-Jin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.62-66
    • /
    • 2011
  • This paper proposes a parallel architecture of random signal-based learning (PRSL), merged with simulated annealing (SA), to optimize the fuzzy logic controller (FLC). Random signal-based learning (RSL) finds the local optima very well, whereas it can not finds the global optimum in a very complex search space because of its serial nature. To overcome these difficulties, PRSL, which consists of serial RSL as a population, is considered. Moreover, SA is added to RSL to help the exploration. The validity of the proposed algorithm is conformed by applying it to the optimization of a FLC for the inverted pendulum.

Application of Experimental Design Methods for Minimum Weight Design and Sensitivity Evaluation of Passive-Type Deck Support Frame for Offshore Plant Float-Over Installation (해양플랜트 플로트오버 설치 공법용 수동형 갑판 지지 프레임의 최소중량설계와 민감도 평가를 위한 실험계획법 응용)

  • Kim, Hun Gwan;Lee, Kangsu;Song, Chang Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.161-171
    • /
    • 2021
  • This paper presents the findings of a comparative study on minimum weight design and sensitivity evaluation using different experimental design methods for the structural design of an active-type deck support frame (DSF) developed for the float-over installation of an of shore plant topside. The thickness sizing variables of the structural members of a passive-type DSF were considered the design factors, and the output responses were defined using the weight and strength performances. The design of the experimental methods applied in the comparative study of the minimum weight design and the sensitivity evaluation were the orthogonal array design, Box- Behnken design, and Latin hypercube design. A response surface method was generated for each design of the experiment to evaluate the approximation performance of the design space exploration according to the experimental design, and the accuracy characteristics of the approximation were reviewed. Regarding the minimum weight design, the design results, such as numerical costs and weight minimization, of the experimental design for the best design case, were evaluated. The Box- Behnken design method showed the optimum design results for the structural design of the passive-type DSF.

Structure Design Sensitivity Analysis of Active Type DSF for Offshore Plant Float-over Installation Using Design of Experiments (실험계획법을 이용한 해양플랜트 플로트오버 설치 작업용 능동형 DSF의 구조설계 민감도 해석)

  • Kim, Hun-Gwan;Song, Chang Yong;Lee, Kangsu
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.98-106
    • /
    • 2021
  • The paper deals with comparative study on sensitivity analysis using various methods regarding to design of experiments for structure design of an active type DSF (Deck support frame) that was developed for float-over installation of offshore plant. The thickness sizing variables of structure member of the active type DSF were considered the design factors. The output responses were defined from the weight and the strength performances. Various methods such as orthogonal array design, Box-Behnken design, and Latin hypercube design were applied to the comparative study. In order to evaluate the approximation performance of the design space exploration according to the design of experiments, response surface method was generated for each design of experiment, and the accuracy characteristics of the approximation were reviewed. The design enhancement results such as numerical costs, weight minimization, etc. via the design of experiment methods were compared to the results of the best design. The orthogonal array design method represented the most improved results for the structure design of the active type DSF.

Analysis of landing mission phases for robotic exploration on phobos mar's moon

  • Stio, A.;Spinolo, P.;Carrera, E.;Augello, R.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.529-541
    • /
    • 2017
  • Landing phase is one of the crucial and most important phases during robotic aerospace explorations. It concerns the impact of the landing module of a spacecraft on a celestial body. Risks and uncertainties of landing are mainly due to the morphology of the surface, the possible presence of rocks and other obstacles or subsidence. The present work quotes results of a computational analysis direct to investigate the stability during the landing phase of a lander on Phobos, a Mars Moon. The present study makes use of available software tools for the simulation analyses and results processing. Due to the nature of the system under consideration (i.e., large displacements and interaction between several systems), multibody simulations were performed to analyze the lander's behavior after the impact with the celestial body. The landing scenario was chosen as a result of a DOE (Design of Experiments) analysis in terms of lander velocity and position, or ground slope. In order to verify the reliability of the present multibody methodology for this particular aerospace issue, two different software tools were employed in order to emphasize two different ways to simulate the crash-box, a particular component of the system used to cushion the impact. The results show the most important frames of the simulations so as to provide a general idea about how lander behaves in its descent and some trends of the main characteristics of the system. In conclusion, the success of the approach is demonstrated by highlighting that the results (crash-box shortening trend and lander's kinetic energy) are comparable between the two tools and that the stability is ensured.

Mission Orbit Design of CubeSat Impactor Measuring Lunar Local Magnetic Field

  • Lee, Jeong-Ah;Park, Sang-Young;Kim, Youngkwang;Bae, Jonghee;Lee, Donghun;Ju, Gwanghyeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.127-138
    • /
    • 2017
  • The current study designs the mission orbit of the lunar CubeSat spacecraft to measure the lunar local magnetic anomaly. To perform this mission, the CubeSat will impact the lunar surface over the Reiner Gamma swirl on the Moon. Orbit analyses are conducted comprising ${\Delta}V$ and error propagation analysis for the CubeSat mission orbit. First, three possible orbit scenarios are presented in terms of the CubeSat's impacting trajectories. For each scenario, it is important to achieve mission objectives with a minimum ${\Delta}V$ since the CubeSat is limited in size and cost. Therefore, the ${\Delta}V$ needed for the CubeSat to maneuver from the initial orbit toward the impacting trajectory is analyzed for each orbit scenario. In addition, error propagation analysis is performed for each scenario to evaluate how initial errors, such as position error, velocity error, and maneuver error, that occur when the CubeSat is separated from the lunar orbiter, eventually affect the final impact position. As a result, the current study adopts a CubeSat release from the circular orbit at 100 km altitude and an impact slope of $15^{\circ}$, among the possible impacting scenarios. For this scenario, the required ${\Delta}V$ is calculated as the result of the ${\Delta}V$ analysis. It can be used to practically make an estimate of this specific mission's fuel budget. In addition, the current study suggests error constraints for ${\Delta}V$ for the mission.

Trend Analysis in Upper Stage Engine Development of Space Launch Vehicles (우주발사체의 상단 엔진 개발 동향 분석)

  • Han, Kyunghwan;Rho, Tae-Seong;Huh, Hwanil;Lee, Hyoung Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.79-95
    • /
    • 2022
  • Since space exploration began in the 1950s, numerous upper stage engines have been developed and used based on various design concepts. In this paper, information of upper stage engines which developed or developing is analysed and their characteristics and performance are summarized. These days, there are many cases of commercial heavy launch vehicles applying upper stage engines using liquid hydrogen with expander cycle which launched recently. Engines operating by Kerosene seem to be close to its theoretical maximum performance based on past experiences. Meanwhile, engines using methane propellant, which has recently become an issue, are also undergoing many developments because of various advantages. Recently, private companies are actively participating in launch vehicle market, and there are many cases in which the government and companies jointly research of next-generation engine.

A Study on Deriving Process of a Design Alternative to the Forest Experience Center for Children through Preschooler Participatory (유아참여를 통한 유아숲체험원 설계안 도출과정에 관한 연구)

  • Kang, Tae-Sun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.5
    • /
    • pp.1-13
    • /
    • 2019
  • This study is to derive a design alternative to the FECC (Forest Experience Center for Children) that meets the preschooler's preferences. For this purpose, preschooler participation is included in each phase of the FECC, the site perception phase, the deriving design elements phase, and the deriving design alternative phase. In this study, the process of the deriving design alternative phase was carried out with kindergarteners and preschoolers (6, 7 years olds; all 41 students) at Songsan-mulbit FECC in Gwangsan-gu, Gwangju. In order to derive the design alternatives, three detailed design processes (preschooler participation 2 times, researcher analysis 1 time), tool construction, and a preschooler participation workshop were conducted. The results of this study are as follows. First, as a result of the preschooler's design process, 41 designs were drawn, and an average of 7.66 spaces were drawn by each preschooler. The 6-year-old males designed the least (average 6.80 spaces) and the 7-year-old females designed the most (9.0 spaces). The physical and adventure play spaces were most common (38.9% to 48.7%) regardless of gender or age. To analyze the feasibility of the preschooler's design using a base map, the appearance of the physical environmental characteristics (7 items) in the site were analyzed in each of the 41 designs. As a result, the environmental characteristics were apparent a total 72 times overall. Similar environmental characteristics appearing more than once were apparent in 87.8% (26 designs) of designs. Second, three design alternatives were derived: APS- types (intensive planning of active play facility spaces) was presented in 15 designs, NS-types (planning focused on nature spaces) was presented in 14 designs, and SPS-types (planning focused on static play facility spaces) were presented 12 designs. Third, NS-type, which were finally selected through a preference assessment (5-point scale) and a comparative assessment of the three alternatives, has mainly natural spaces (forest space, forest path, shelter, natural exploration space, and ecological pond) and active play facility spaces, water play space and soil (sand) play spaces was appropriately designed. Therefore, the NS-type was analyzed as the design alternative that can fully accomplish all types of cognitive development through developed through play (functional play, constructive play, dramatic(symbolic) play).

Complex Power: An Analytical Approach to Measuring the Degree of Urbanity of Urban Building Complexes

  • Xu, Shuchen;Ye, Yu;Xu, Leiqing
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.2
    • /
    • pp.165-175
    • /
    • 2017
  • The importance of designing urban building complexes so that they obtain 'urban' power, rather than become isolated from the surrounding urban context, has been well recognized by both researchers and practitioners. Nevertheless, most current discussions are made from architects' personal experiences and intuition, and lack a quantitative understanding, to which obstacles include an in-depth exploration of the 'urban' power between building complexes and the urban environment. This paper attempts to measure this feature of 'urban', i.e., 'urbanity,' through a new analytical approach derived from the opendata environment. Three measurements that can be easily collected though the Google Maps API and Open Street Map are applied herein to evaluate high or low values of urbanity. Specifically, these are 'metric depth', i.e., the scale of extended public space, 'development density', i.e., density and distribution of point of interests (POIs), and 'type diversity', i.e., diversity of different commercial types. Six cases located in Japan, China and Hong Kong respectively are ranked based on this analytical approach and compared with each other. It shows that Japanese cases, i.e., Osaka Station City and Namba Parks, Osaka, obtained clearly higher values than cases in Shanghai and Hong Kong. On one hand, the insight generated from measuring and explaining 'urban' power would help to assist better implementation of this feature in the design of urban building complexes. On the other hand, this analytical approach can be easily extended to achieve a large-scale measurement and comparison among different urban building complexes, which is also helpful for design practitioners.

Optimized DES Core Implementation for Commercial FPGA Cluster System (상용 FPGA 클러스터 시스템 기반의 최적화된 DES 코어 설계)

  • Jung, Eun-Gu;Park, Il-Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.2
    • /
    • pp.131-138
    • /
    • 2011
  • The previous FPGA cluster systems for a brute force search of DES keyspace have showed cost efficient performance, but the research on optimized implementation of the DES algorithm on a single FPGA has been insufficient. In this paper, the optimized DES implementation for a single FPGA of the commercial FPGA cluster system with 77 Xilinx Virtex5-LX50 FPGAs is proposed. Design space exploration using the number of pipeline stages in a DES core, the number of DES cores and the maximum clock frequency of a DES core is performed which leads to integrating 16 DES cores running at 333MHz. Also low power design is applied to reduce the loss of performance caused by limitation of power supply on each FPGA which results in fitting 8 DES cores running at 333MHz. When the proposed DES implementations would be used in the FPGA cluster system, it is estimated that the DES key would be found at most 2.03 days and 4.06 days respectively.

A prediction of the rock mass rating of tunnelling area using artificial neural networks (인공신경망을 이용한 터널구간의 암반분류 예측)

  • Han, Myung-Sik;Yang, In-Jae;Kim, Kwang-Myung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.277-286
    • /
    • 2002
  • Most of the problems in dealing with the tunnel construction are the uncertainties and complexities of the stress conditions and rock strengths in ahead of the tunnel excavation. The limitations on the investigation technology, inaccessibility of borehole test in mountain area and public hatred also restrict our knowledge on the geologic conditions on the mountainous tunneling area. Nevertheless an extensive and superior geophysical exploration data is possibly acquired deep within the mountain area, with up to the tunnel locations in the case of alternative design or turn-key base projects. An appealing claim in the use of artificial neural networks (ANN) is that they give a more trustworthy results on our data based on identifying relevant input variables such as a little geotechnical information and biological learning principles. In this study, error back-propagation algorithm that is one of the teaching techniques of ANN is applied to presupposition on Rock Mass Ratings (RMR) for unknown tunnel area. In order to verify the applicability of this model, a 4km railway tunnel's field data are verified and used as input parameters for the prediction of RMR, with the learned pattern by error back propagation logics. ANN is one of basic methods in solving the geotechnical uncertainties and helpful in solving the problems with data consistency, but needs some modification on the technical problems and we hope our study to be developed in the future design work.

  • PDF