• 제목/요약/키워드: Design reasoning

검색결과 471건 처리시간 0.028초

Development of Case-adaptation Algorithm using Genetic Algorithm and Artificial Neural Networks

  • Han, Sang-Min;Yang, Young-Soon
    • Journal of Ship and Ocean Technology
    • /
    • 제5권3호
    • /
    • pp.27-35
    • /
    • 2001
  • In this research, hybrid method with case-based reasoning and rule-based reasoning is applied. Using case-based reasoning, design experts'experience and know-how are effectively represented in order to obtain a proper configuration of midship section in the initial ship design stage. Since there is not sufficient domain knowledge available to us, traditional case-adaptation algorithms cannot be applied to our problem, i.e., creating the configuration of midship section. Thus, new case-adaptation algorithms not requiring any domain knowledge are developed antral applied to our problem. Using the knowledge representation of DnV rules, rule-based reasoning can perform deductive inference in order to obtain the scantling of midship section efficiently. The results from the case-based reasoning and the rule-based reasoning are examined by comparing the results with various conventional methods. And the reasonability of our results is verified by comparing the results wish actual values from parent ship.

  • PDF

Design of Problem Solving Primitives for Efficient Evidential Reasoning

  • Lee, Gye Sung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제11권3호
    • /
    • pp.49-58
    • /
    • 2019
  • Efficient evidential reasoning is an important issue in the development of advanced knowledge based systems. Efficiency is closely related to the design of problems solving methods adopted in the system. The explicit modeling of problem-solving structures is suggested for efficient and effective reasoning. It is pointed out that the problem-solving method framework is often too coarse-grained and too abstract to specify the detailed design and implementation of a reasoning system. Therefore, as a key step in developing a new reasoning scheme based on properties of the problem, the problem-solving method framework is expanded by introducing finer grained problem-solving primitives and defining an overall control structure in terms of these primitives. Once the individual components of the control structure are defined in terms of problem solving primitives, the overall control algorithm for the reasoning system can be represented in terms of a finite state diagram.

RBFN기법을 활용한 적응적 사례기반 설계

  • 정사범;임태수
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2005년도 추계학술대회 및 정기총회
    • /
    • pp.237-240
    • /
    • 2005
  • This paper describer a design expert system which determines the design values of shadow mask using Case-Based Reasoning. In Case-Based Reasoning, it is important to both retrieve similar cases and adapt the cases to meet the design specifications exactly. Especially, the difficulty in automating the adaptation process will prevent the designers from using the design expert systems efficiently and easily. This paper explains knowledge-based design support systems for shadow mask through neural network-based case adaptation. Specifically, we developed 1) representing design knowledge and 2) adaptive case-based reasoning method using RBFN (Radial Basis Function Network).

  • PDF

정성 추론에 의한 절삭 시스넴의 개념 설계 (Conceptual Design of Cutting System by Qualitative Reaoning)

  • 김성근;최영석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.531-535
    • /
    • 1996
  • Computer aided conceptual solution of engineering problems can be effectively implemented by qualitative reasoning based on a physical model. Qualitative reasoning needs modeling paradigm which provides intellignet control of modeling assumptions and robust inferences without quantitative information about the system. We developed reasoning method using new algebra of qualitative mathematics. The method is applied to a conceptual design scheme of anadaptive control system of cutting process. The method identifies differences between proportional and proportional-integral control scheme of cutting process. It is shown that unfeasible investment could be prevented in the early conceptual stage by the qualitative reasoning procedures proposed in this paper.

  • PDF

실험 설계에 나타난 초등 예비교사의 과학적 추론의 특징: 지식과 추론의 상호작용 (Characterization of Pre-service Elementary Teachers' Scientific Reasoning in Experimental Design: Interaction between Knowledge and Reasoning)

  • 장병기
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제31권2호
    • /
    • pp.227-242
    • /
    • 2012
  • This research explores the scientific reasoning of pre-service elementary teachers in experimental design. The article focuses on pre-service teachers' responses to the questions in the worksheets which involve making their knowledge claims on extinguishing of a burning candle in a closed container, evaluating anomalous data, and designing experiment to test their ideas. Their responses are interpreted in terms of categories developed by Tytler and Peterson(2003, 2004). The interrelationship between conceptual knowledge and scientific reasoning is explored using the data. It is argued that coordination of ideas and evidence must be emphasized in the scientific investigations rather than fair test.

메커니즘 공간 배치의 정성적 표현과 부호 대수를 이용한 공간 거동 추론 (Qualitative Representation of Spatial Configuration of Mechanisms and Spatial Behavior Reasoning Using Sign Algebra)

  • 한영현;이건우
    • 한국CDE학회논문집
    • /
    • 제5권4호
    • /
    • pp.380-392
    • /
    • 2000
  • This paper proposes a qualitative reasoning approach for the spatial configuration of mechanisms that could be applied in the early phase of the conceptual design. The spatial configuration problem addressed in this paper involves the relative direction and position between the input and output motion, and the orientation of the constituent primitive mechanisms of a mechanism. The knowledge of spatial configuration of a primitive mechanism is represented in a matrix form called spatial configuration matrix. This matrix provides a compact and convenient representation scheme for the spatial knowledge, and facilitates the manipulation of the relevant spatial knowledge. Using this spatial knowledge of the constituent primitive mechanisms, the overall configuration of a mechanism is described and identified by a spatial configuration state matrix. This matrix is obtained by using a qualitative reasoning method based on sign algebra and is used to represent the qualitative behavior of the mechanism. The matrix-based representation scheme allows handling the involved spatial knowledge simultaneously and the proposed reasoning method enables the designer to predict the spatial behavior of a mechanism without knowing specific dimension of the components of the mechanism.

  • PDF

공간 재구성을 위한 Digital Synectics에 관한 연구 (A Study on Digital Synectics for The Recomposition of Architectural space)

  • 이철재
    • 한국실내디자인학회논문집
    • /
    • 제41호
    • /
    • pp.266-274
    • /
    • 2003
  • Synectics is one of several techniques used to enhance brainstorming by taking a more active role and introducing metaphor and structure into the process. It is unclear at what level of specificity this should be formulated as a pattern. This thesis reviews recent computational as well as experimental work on analogical reasoning based on synectics. New results regarding information processing of analogical reasoning stages, major computational models and recent attempts to compare these models are reviewed. Computational models are also discussed in the computational as well as cognitive psychology perspectives. Future directions in analogical reasoning research are proposed. The following import is the need to accommodate the typology and normal assessment in the concrete circumstances where actual reasoning and problem solving take place. In order to get to this end, we used computational models by Thagard who take the stand of ‘Computational Philosophy of Science’, which assumes ‘Weak AI’ to explicate what constitute the very pecularity of Analogical Reasoning.

Multiresponse Surfaces Optimization Based on Evidential Reasoning Theory

  • He, Zhen;Zhang, Yuxuan
    • International Journal of Quality Innovation
    • /
    • 제5권1호
    • /
    • pp.43-51
    • /
    • 2004
  • During process design or process optimization, it is quite common for experimenters to find optimum operating conditions for several responses simultaneously. The traditional multiresponse surfaces optimization methods do not consider the uncertain relationship among these responses sufficiently. For this reason, the authors propose an optimization method based on evidential reasoning theory by Dempster and Shafer. By maximizing the basic probability assignment function, which indicates the degree of belief that certain operating condition is the solution of this multiresponse surfaces optimization problem, the desirable operating condition can be found.

기계공학에서의 PBL적용 교과과정 개발: 제품해체 설계추론 (Development of a New Design Course to Apply Problem Based Learning in Mechanical Engineering: Product Dissection and Design Reasoning)

  • 황성호;권오채;김용세
    • 공학교육연구
    • /
    • 제8권1호
    • /
    • pp.20-30
    • /
    • 2005
  • 최근 들어 '학습자 중심의 자기주도 학습' 이라는 새로운 교육패러다임에 대한 관심이 집중되면서, 문제중심학습(Problem-Based Learning; PBL)이 학생의 과학적 사고능력 및 지식의 확장, 적용력, 비판적 지식창출 능력, 창의적 문제해결 능력을 향상시킬 수 있는 방법으로 주목받고 있다. 기계공학 분야에서도 이러한 PBL교육기법을 적용한 교과과정 개발에 대한 노력들이 활발히 전개되고 있으며, 본 논문에서 제시하는 '제품해체 설계추론'교과목도 그러한 교육방법을 적용한 한 예시라 할 수 있다. 제품해체 설계추론은 제품개발에 있어서 그 기여도가 가장 높은 기초물리학이 실제 제품에 어떻게 응용되고 있는가를 학생들이 직접 참여하여 체험할 수 있게 하는 제품해체 학습법 (product dissection)을 도입하여, 설계추론(design reasoning)에 있어서 기초물리학의 중요성을 인식시키는 한편, 다양한 기초과학에 대한 흥미를 유발할 수 있는 실습위주의 교과목이라 할 수 있다. 이러한 교과목을 통하여 창의적 설계 인력 양성에 큰 역할을 할 수 있을 것으로 기대한다.

정성분석기법을 이용한 공용중인 강철도교의 잔존피로수명평가에 관한 연구 (A Study of Fatigue Life Evaluation for the Servicing Railway Steel Bridge)

  • 박용걸;최정열
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.982-987
    • /
    • 2004
  • Most design practices have not taken advantage of the advanced theories in the modern fracture mechanics and finite element analysis due to complexity of analysis as well as the large quantity of vaguely defined parameters in actual designs. This paper considers fatigue problems in bridge structures using effective analytical and design tools from the field of qualitative constraint reasoning. A set of software modules was developed for fatigue analysis ,and evaluation, which is easily applicable in engineering practices of bridge designers. The software modules integrate techniques in the field of knowledge representation and qualitative reasoning, into the conventional fatigue analysis. The techniques enable the use complex analysis formulations to tackle practical problems with uncertainties, and present the design outcome in two-dimensional design space. Appropriate engineering assumptions and judgments in carrying out these procedures, often the most difficult part for practicing engineers, can be partially produced by using qualitative reasoning to define the trends and ranges, interval constraint analysis to derive the controlling parameters, as well as design space to account for practical experience. This paper depicts a way of complex analysis to practical engineering designs with qualitative reasoning.

  • PDF