• Title/Summary/Keyword: Design of the robot

Search Result 2,382, Processing Time 0.04 seconds

Design of Simple-Structured Fuzzy Logic Systems for Segway-Type Mobile Robot

  • Yoo, Hyun-Ho;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.232-239
    • /
    • 2015
  • Studies on the control of the inverted pendulum type system have been widely reported. This is because it is a typical complex nonlinear system and may be a good model for verifying the performance of a proposed control system. In this paper, we propose the design of some fuzzy logic control (FLC) systems for controlling a Segway-type mobile robot, which is an inverted pendulum type system. We first derive a dynamic model of the Segway-type mobile robot and then analyze it in detail. Next, we propose the design of some FLC systems that have good performance for the control of any nonlinear system. Then, we design two conventional FLC systems for the position and balance control of the Segway-type mobile robot, and we demonstrate their usefulness through simulations. Next, we point out the possibility of simplifying the design process and reducing the computational complexity,, which results from the skew symmetric property of the fuzzy control rule tables. Finally, we design two other FLC systems for position and balance control of the Segway-type mobile robot. These systems have only one input variable in the FLC systems. Furthermore, we observe that they offer similar control performance to that of the conventional two-input FLC systems.

PRACTICAL APPLICATION OF ARC WELDING ROBOT AND JOINT DESIGN FOR ROBOT WELDING OF STEEL STRUCTURES

  • Horikawa, Kohsuke
    • Proceedings of the KWS Conference
    • /
    • 1992.04a
    • /
    • pp.3-9
    • /
    • 1992
  • This paper introduces the present status of application of arc welding robots, construction, engineering subjects, design requirement, example of design modification for welding by arc welding robot. As a conclusion closer cooperation of robot engineer, welding engineer and structural designer is emphasised. This is the summary of the work done by Working Group for IIW Commission XV, chaired by the author.

  • PDF

Design of Cleaning Robot System Using Reconfigurable Heterogeneous Modular Architecture (모듈화 구조 기반의 청소 로봇 시스템 설계)

  • Ahn, Ho-Seok;Sa, In-Kyu;Choi, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.153-155
    • /
    • 2009
  • Cleaning robot system consists of four parts; navigation system for moving of robot, cleaning system, power system, and main system with cleaning algorithm. Navigation system is the most expensive part because it has motors and sensors which is high price. Navigation system is also essential to service robot system, but user should buy two systems which are service robot system and cleaning robot system. If it is possible to share navigation system, user can save money. In this paper, we design the cleaning robot system based on modular architecture.

  • PDF

Applying Design Pattern & Refactoring on Implementing RTOS for the Small Educational Multi-Joint Robot (소형 교육용 다관절로봇 RTOS 구현을 위한 디자인 패턴 & 리팩토링 적용)

  • Son, Hyun-Seung;Kim, Woo-Yeol;Ahn, Hong-Young;Kim, Robert Young-Chul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.217-224
    • /
    • 2009
  • The traditional small educational multi-joint robots were developed on firmware. In these system's case, we cann't give a chance to educate good practices due on executing just robot's simple movements. But it may be possible for RTOS to control the elaborate movement of the robot with assembling each part on firmware. With this RTOS, we can enhance the efficiency of robot's movements, but too difficult to use the education as increasing the complexity of robot system. To solve the problem, we apply with Design pattern and Refactoring for the Education. Applying robot's design with Design pattern and Refactoring. There may be easily understand what and how to design RTOS for any level ones. We may easily change/upgrade RTOS for new system with this approach. This paper mentions to design RTOS with Design patterns and to apply RTOS's source code with Refactoring.

  • PDF

The design of wall-climbing underwater robot system (수중 벽면 주행 기구의 설계)

  • 김병만;김경훈;박영수;박기용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.237-240
    • /
    • 1997
  • The design of underwater inspection robot system is presented. This robot system is designed for wall inspection in the nuclear plant facility. This paper describes the major components of the robot and its structures. This robot system is consisted of three parts : mechanical electrical and sensing pail. The main problem of designing mechanical part is to select the mechanism of driving. In this system the propeller driving mechanism is selected which can be move the robot continuously. For reducing the size of robot, we designed the CPU and motor controller board. The sensor system is consisted of two parts. One is environment monitoring part and the other is robot localization system.

  • PDF

Design of an Elbow Rehabilitation Robot based on Force Measurement and its Force Control (힘측정기반 팔꿈치 재활로봇 설계 및 힘제어)

  • Kim, Han-Sol;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.413-420
    • /
    • 2015
  • This paper describes the design of an elbow rehabilitation robot based on force measurement that enables a severe stroke patient confined to their bed to receive elbow rehabilitation exercises. The developed elbow rehabilitation robot was providewitha two-axis force/torque sensor which can detect force Fz and torque Tz, thereby allowing it to measure therotational force (Tz) exerted on the elbow and the signal force Fz which can be used as a safety device. The robot was designed and manufactured for severe stroke patients confined to bed, and the robot program was manufactured to perform flexibility elbow rehabilitation exercises. Asa result of the characteristics test of the developed rehabilitation robot, the device was safely operated while the elbow rehabilitation exercises were performed. Therefore, it is thought that the developed rehabilitation robot can be used for severe stroke patients.