• Title/Summary/Keyword: Design of mixture experiments

Search Result 124, Processing Time 0.027 seconds

A graphical method for evaluating the effect of design augmentation, missing observation, and outlier in mixture experiments (혼합물 실험계획에서 실험점의 확장, 결측치, 이상치의 영향을 평가할 수 있는 그래픽 방법)

  • Jang, Dae-Heung;Park, Sang-Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.4
    • /
    • pp.156-167
    • /
    • 1996
  • D-optimality is used often in design augmentation of mixture experiments. Although such alphabetic criteria provide a valuable foundation for generating designs, they often fail to convey the true nature of the design's support of the fitted model in terms of prediction variance over a region of interest. Thus, a graphical method is proposed to evaluate augmented designs in mixture experiments. This method can be used to evaluate the effect of missing observation and outlier in mixture experiments.

  • PDF

An Optimum Design of Secondary Battery using Design of Experiments with Mixture (혼합물 실험계획법을 이용한 이차전지의 최적설계)

  • Kim, Seong-Jun;Park, Jong-In
    • IE interfaces
    • /
    • v.18 no.4
    • /
    • pp.402-411
    • /
    • 2005
  • Secondary batteries with high performance are essential in widespread use of modern portable devices such as cellular phones and laptop computers. High energy density, long cycle life, and safety are some of important requirements for secondary battery. To achieve such characteristics, a mixing proportion of electrolyte solution ingredients in the battery should be carefully chosen. In this paper, using statistical design of mixture experiments (DOME), we attempt to find an optimum condition of designing the secondary battery. DOME has a distinct feature in that the experimental region is represented by simplex, rather than hypercube, because the sum of blend proportions should be unity. Several designs based upon this point have been proposed for mixture experiments. Among them, an extreme vertices design is employed in this paper because there are a couple of blend constraints to be considered. In order to investigate how the mixing proportion interacts with other manufacturing factors, a fractional factorial design is also included across the extreme vertices design. As a result, we find that the blend proportion of solution ingredients has a significant effect on battery performances. By simultaneously optimizing two battery capacities, this paper proposes an optimum blend proportion according to process factor settings.

Block Confounding Effect for Mixture Experiments with Process Variables (혼합물실험(混合物實驗)의 공정변수(工程變數)에 관한 교락(交絡) block 효과(效果))

  • Jeong, Jung-Hui;Kim, Jeong-Man
    • Journal of Korean Society for Quality Management
    • /
    • v.13 no.2
    • /
    • pp.66-72
    • /
    • 1985
  • The objective of mixture experiments with process variables is to find experimental blends and conditions that produce the product of highest quality. In this paper, designs for mixture experiments with process variables are presented, where the emphasis is on using only a fraction of the total number of possible design points and the fitting of reduced models for measuring the effects of the mixture components and process variables.

  • PDF

Axis-Slope-Rotatable Designs for Experiments With Mixture

  • Park, Sung H.;Kim, Joo H.
    • Journal of the Korean Statistical Society
    • /
    • v.11 no.1
    • /
    • pp.36-44
    • /
    • 1982
  • A new design concept, called axis-slope-rotatability, is presented for the design of experiments with mixtures. This is an analogue of the Box-Hunter (1957) rotatability for second order response surface designs. By choice of design, it is possible to make the variance of the estimated slopes along the component axes constant for all axial points equidistant from the center point of the factor space. This property is called axis-slope-rotatability for mixture experiments. When the Scheffe's second degree polynomial is used, it is shown that some symmetry conditions are sufficient for axis-slope-rotatability. Several designs having this property are illustrated.

  • PDF

A Case Study on the Optimum Formulation of Coffee by a Mixture Experiment Design (혼합물실험계획에 의한 커피혼합비율 최적화에 대한 연구)

  • Lee, Jong-Seong;Moon, Je-Woong
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.83-87
    • /
    • 2002
  • Many industrial products such as paints, ink and adhesives are composed of the ingredients of a mixture. In mixture experiments, the characteristics of quality(response) depends only on the proportions of the ingredients and does not depend on the total amount of the mixture. This article discusses the constrained mixture experimental design, the data analysis, and the optimum formulation of ingredients based on the two quality characteristics - taste and flavor. It IS shown that efficient designs can be constructed from D-optimal criterion. Special cubic models were selected as the final mixture response surfaces for both reponses. The desirability function was used for the optimization of the two responses.

  • PDF

Practical designs for mixture component-process experiments (실용적인 혼합물 성분 공정변수 실험설계)

  • Lim, Yong-B.
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.3
    • /
    • pp.400-411
    • /
    • 2011
  • Process variables are factors in an experiment that are not mixture components but could affect the blending properties of the mixture ingredients. For example, the effectiveness of an etching solution which is measured as an etch rate is not only a function of the proportions of the three acids that are combined to form the mixture, but also depends on the temperature of the solution and the agitation rate. Efficient designs for the mixture components-process variables experiments depend on the mixture components-process variables model which is called a combined model. We often use the product model between the canonical polynomial model for the mixture and process variables model as a combined model. In this paper we propose three starting models for the mixture components-process variables experiments. One of the starting model we are considering is the model which includes product terms up to cubic order interactions between mixture effects and the linear & pure quadratic effect of the process variables from the product model. In this paper, we propose a method for finding robust designs and practical designs with respect to D-, G-, and I-optimality for the various starting combined models and then, we find practically efficient and robust designs for estimating the regression coefficients for those models. We find the prediction capability of those recommended designs in the case of three components and three process variables to be good by checking FDS(Fraction of Design Space) plots.

Slope-rotatable Designs for Estimating the Slope of Response Surfaces in Experiments with Mixtures

  • Park, Sung H.;Kim, Jung I.
    • Journal of the Korean Statistical Society
    • /
    • v.17 no.2
    • /
    • pp.121-133
    • /
    • 1988
  • In this paper a class of mixture designs for estimating the slope of second order Scheffe polynomial response surfaces for mixture experiments with q components is presented. The variance of the estimated directional slope at a point is a function of the direction of the slope and the design. If the variance is averaged over all possible directions in the (q-1)-dimensional simplex, the averaged variance is only a function of the point and the design. By choice of design, it is possible to make this variance constant for all points equidistant from the centroid point. This property is called "slope-rotatability over al directions in the simplex", and the necessary and sufficient conditions for mixture design to have this property are given and proved. The class of designs with this property is compared with other mixture designs and discussed.discussed.

  • PDF

Measures Of Slope Rotatability For Mixture Experiment Designs

  • Ha, Jeong-Cheol
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.745-755
    • /
    • 2007
  • The concept of slope rotatability introduced by Hader and Park(1978) is available when we are interested in the difference of the responses. Since there can be constraints on the factor levels in mixture experiments, there arises a need for adaptation of the concept of slope rotatability and the measure to assess it. In this article, measures of slope rotatability in mixture experiments are proposed to quantify the amount of slope rotatability for a given design. Measures for a restricted region design as well as for an unrestricted region design are presented. Then, the designs having different optimalities are compared with respect to these measures by some examples.

  • PDF

Using Design of Mixture Experiments to Select the Ratio of a Three-Component Electrode for Optimal Generation of Hydroxyl Radicals (혼합물 실험계획법을 이용한 OH라디칼 최적 생성을 위한 삼성분 전극의 비율 선정)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.29 no.8
    • /
    • pp.793-800
    • /
    • 2020
  • The conventional development of multi-component electrodes is based on the researcher's experience and is based on trial and error. Therefore, there is a need for a scientific method to reduce the time and economic losses thereof and systematize the mixing of electrode components. In this study, we use design of mixture experiments (DOME)- in particular a simplex lattice design with Design Expert program- to attempt to find an optimum mixing ratio for a three-component electrode for the high RNO degradation; RNO is an indictor of OH radical formation. The experiment included 12 experimental points with 2 center replicates for 3 different independent variables (with the molar ratio of Ru, Ti, Ir). As the Prob > F value of the 'Quadratic' model is 0.0026, the secondary model was found to be suitable. Applying the molar ratio of the electrode components to the corrected response model results is an RNO removal efficiency (%) = 59.89 × [Ru] + 9.78 × [Ti] + 67.03 × [Ir] + 66.38 × [Ru] × [Ir] + 132.86 × [Ti] × [Ir]. The R2 value of the equation is 0.9374 after the error term is excluded. The optimized formulation of the ternary electrode for an high RNO degradation was acquired when the molar ratio of Ru 0.100, Ti 0.200, Ir 0.700 (desirability d value, 1).

An Optimum Design of Secondary Battery Using Design of Experiments with Mixture (혼합물실험계획법을 이용한 2차전지의 최적설계)

  • Kim, Seong-Jun;Park, Jong-In
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.983-989
    • /
    • 2005
  • Secondary batteries with high performance are essential in widespread use of modern portable devices such as cellular phones and laptop computers. High energy density, long cycle life, and safety are some of important requirements for secondary battery. To achieve such characteristics, a mixing proportion of electrolyte solution ingredients in the battery should be carefully chosen. In this paper, using statistical design of mixture experiments (DOME), we attempt to find an optimum condition of designing the secondary battery. DOME has a distinct feature in that the experimental region is represented by simplex, rather than hypercube, because the sum of blend proportions should be unity. Several designs based upon this point have been proposed for mixture experiments. Among them, an extreme vertices design is employed in this paper because there are a couple of blend constraints to be considered. In order to investigate how the mixing proportion interacts with other manufacturing factors, a fractional factorial design is also included across the extreme vertices design. As a result, we find that the blend proportion of solution ingredients has a significant effect on battery performances. By simultaneously optimizing two battery capacities, this paper proposes an optimum blend proportion according to process factor settings.

  • PDF