• Title/Summary/Keyword: Design of hydraulic fracturing

Search Result 15, Processing Time 0.021 seconds

Theoretical Background and Design of Hydraulic Fracturing in Oil and Gas Production (석유가스생산을 위한 수압파쇄기술 설계 이론과 실제)

  • Cheon, Dae-Sung;Lee, Tae Jong
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.538-546
    • /
    • 2013
  • This paper deals with a hydraulic fracturing technique, which is one of the methods to maximize the recovery rate and productivity of oil and gas in the petroleum industry. In the hydraulic fracturing, typically water mixed with sand and chemicals is injected into a wellbore in order to create artificial fractures along which formation fluids migrate to the well. In recent years, it is widely used in non-conventional oil and gas such as oil shale and shale gas. Three main stages of the hydraulic fracturing process, the proposed design models for the effective hydraulic fracturing and diagnostics after fracturing treatment are introduced. In addition, this paper introduces reservoir geomechanics to solve various problems in the process of hydraulic fracturing.

Estimation of principle stress field by Televiewer data analysis (텔레뷰어 자료분석을 통한 암반 내 수평 주응력 방향 산출)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Nam, Ji-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.815-822
    • /
    • 2004
  • A knowledge of in situ stress state is important to design various engineering structures such as dams, tunnels and so on. There are about three wellknown indicators that is, borehole will breakouts, hydraulic fracturing, ellipsoidal cross section of borehole that have been attributed to the state of stress in the vicinity of borehole. Fortunately, Televiewer traveltime image can be used as a caliper log with 144 or 288 arms, which allows to determine the borehole shape. Televiewer amplitude image will give detailed information about the distribution and character of breakouts and hydraulic fracturing as well. For investigation purposes, a series of boreholes(total 195 boreholes: 12.239m) that have been logged all over the country during past 10 years are analyzed. The primary objective of this paper are to examnine the ability of a Televiewer to determine the shape of borehole, to present data inferred by stress indicators, to indicate their possible relationship with the anisotropic horizontal stresses. It is shown that in most cases the fracture orientation statistically estimated from observed fractures denotes an excellent correlation with the orientations inferred by stress indicators. Many intervals of breakouts are terminated at the intersection of oblique fracture with the borehole. The results from Televiewer data are further compared with those of hydraulic fracturing techniques.

  • PDF

Study on Microseismic Data Acquisition and Survey Design through Field Experiments of Hydraulic Fracturing and Artificial Blasting (수압파쇄 및 인공발파 현장실험을 통한 미소지진 계측 및 설계에 대한 연구)

  • Kim, Jungyul;Kim, Yoosung;Yun, Jeum-Dong;Kwon, Sungil;Kwon, Hyongil;Shim, Yonsik;Park, Juhyun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.197-206
    • /
    • 2015
  • The purpose of this study is to ensure microseismic data acquisition technique for hydraulic fracturing imaging at the site of shale gas development. For this, microseismic data acquisition was performed during hydraulic fracturing and artificial blasting at a site bearing shale layers. Measured microseismic event data during the hydraulic fracturing have the very small amplitude of 0.001 mm/sec ~ 0.003 mm/sec and the frequency contents of 5 Hz ~ 20 Hz range. Meanwhile microseismic event data acquired during artificial blasting have the bigger amplitude (0.011 mm/sec ~ 0.302 mm/sec) than hydraulic fracturing event data and their frequency contents have the range of 5 Hz ~ 2 kHz. For microseismic data acquisition design, the selection of appropriate instrumentation including sensors and the recording system, the determination of sensor array and the deployment range were investigated based on the theoretical data and field application experiences.

Analysis of In-Situ Stress Regime from Hydraulic Fracturing Field Measurements in Korea (수압파쇄 현장시험을 통한 국내 지반의 초기응력 분포양상 해석)

  • Choi, Sung-Oong
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.111-116
    • /
    • 2008
  • Since the hydraulic fracturing field testing method was introduced first to Korean geotechnical engineers in 1994, there have been lots of progresses in a hardware system as well as an interpretation tool. The hydrofracturing system of first generation was the pipe-line type, and it has been developed to a wire-line system at their second generation. The current up-to-date system is more compact and is able to be operated by all-in-one system. With a progress in a hardware system, the software for analyzing in-situ stress regime has also been progressed. The shut-in pressure, which is the most ambiguous parameter to be obtained from hydrofracturing pressure curves, can now be acquired automatically from the various methods. While the hardware and software for hydrofracturing tests are being developed during the last decade, the author could accumulate the field test results which can cover the almost whole area of South Korea. Currently these field data are used widely in a feasibility study or a preliminary design step for tunnel construction in Korea. Regarding the difficulties in a site selection and a test performance for the in-situ stress measurement at an off-shore area, the in-situ stress regime obtained from the field experiences in the land area can be used indirectly for the design of a sub-sea tunnel. From the hydrofracturing stress measurements, the trend of magnitude and direction of in-situ stress field was shown identically with the geological information in Korea.

  • PDF

Coupling relevance vector machine and response surface for geomechanical parameters identification

  • Zhao, Hongbo;Ru, Zhongliang;Li, Shaojun
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1207-1217
    • /
    • 2018
  • Geomechanics parameters are critical to numerical simulation, stability analysis, design and construction of geotechnical engineering. Due to the limitations of laboratory and in situ experiments, back analysis is widely used in geomechancis and geotechnical engineering. In this study, a hybrid back analysis method, that coupling numerical simulation, response surface (RS) and relevance vector machine (RVM), was proposed and applied to identify geomechanics parameters from hydraulic fracturing. RVM was adapted to approximate complex functional relationships between geomechanics parameters and borehole pressure through coupling with response surface method and numerical method. Artificial bee colony (ABC) algorithm was used to search the geomechanics parameters as optimal method in back analysis. The proposed method was verified by a numerical example. Based on the geomechanics parameters identified by hybrid back analysis, the computed borehole pressure agreed closely with the monitored borehole pressure. It showed that RVM presented well the relationship between geomechanics parameters and borehole pressure, and the proposed method can characterized the geomechanics parameters reasonably. Further, the parameters of hybrid back analysis were analyzed and discussed. It showed that the hybrid back analysis is feasible, effective, robust and has a good global searching performance. The proposed method provides a significant way to identify geomechanics parameters from hydraulic fracturing.

Study on Characteristics of In-situ Rock Stress State in Mountainous Region by Hydraulic Fracturing Method (수압파쇄시험에 의한 산악지역에서의 현지 암반 초기응력 측정 및 분포특성 연구)

  • Bae, Seong-ho;Jeon, Seok-won;Choi, yong-kun;Kim, Hak-soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.1
    • /
    • pp.57-70
    • /
    • 2002
  • Since early in the 90's, the need for construction of underground rock structures such as long and large section traffic tunnel, energy storage cavern, industrial facility, etc. has been largely increased because the Korean territory is not wide and about 65 % of the land consists of mountainous region. The initial rock stress measurement has been widely conducted to provide the quantitative information on the stress state of engineering site at the design stage of underground rock structures. Among the diverse methods developed for measuring rock stress, hydraulic fracturing test is most popularly used because it is applicable at pre-construction stage and has no limit in testing depth. In this paper, the characteristics of initial rock stress state in mountainous region were studied on the basis of the in-situ hydraulic fracturing stress measurement results from the 60 test boreholes in various parts of Korea.

  • PDF

In-Situ Stress Determinations by Hydraulic Fracturing in Deep Inclined Boreholes for the Design of Underground Oil Storages (유류비축기지 설계를 위한 대심도 경사공에서의 수압파쇄 초기응력 해석)

  • Choi, Sung-Oong;Shin, Hee-Soon;Park, Chan;Syun, Joong-Ho;Bae, Jeong-Sik;Lee, Hyeong-Won;Park, Jong-In;Jeon, Han-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.185-205
    • /
    • 1999
  • Hydraulic fracturing tests were performed in two inclined boreholes for the design of underground oil storages in Korea. Extensions of their application limits were expected through a precise comparison between the interpretation techniques for the vertical and the inclined boreholes. Especially, it was verified that the magnitude of in-situ stress can be varied even in the same rock mass with a variety of geographic/geotechnical characteristics. It was also demonstrated that its orientation can be changed even in the same borehole with the existence of explicit discontinuities.

  • PDF

In-situ Rock Stress Measurement at the Water Tunnel Sites in the OO Oil Storage Facility with Hydraulic Fracturing Method (수압파쇄법을 이용한 OO 원유비축시설 내 수벽 터널에서의 초기응력 측정)

  • Bae, Seong-Ho;Kim, Jae-Min;Kim, Jang-Soon;Lee, Young-Ho
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.80-89
    • /
    • 2008
  • The influence of in-situ rock stress on the stability of an underground rock structure increases as the construction depth become deeper and the scale of a rock structure become larger. In general, hydraulic fracturing stress measurement has been performed in the surface boreholes of the target area at the design stage of an underground structure. However, for some areas where the high horizontal stresses were observed or where the overstressed conditions caused by topographical and geological factors are expected, it is desirable to conduct additional in-situ stress measurement in the underground construction site to obtain more detailed stress information for ensuring the stability of a rock structure and the propriety of current design. The study area was a construction site for the additional underground oil storage facility located in the south-east part of OO city, Jeollanam-do. Previous detailed site investigation prior to the design of underground structures revealed that the excessive horizontal stress field with the horizontal stress ratio(K) greater than 3.0 was observed in the construction area. In this study, a total of 13 hydraulic fracturing stress measurements was conducted in two boreholes drill from the two water tunnel sites in the study area. The investigation zone was from 180 m to 300 m in depth from the surface and all of the fracture tracing works were carried out by acoustic televiewer scanning. For some testing intervals at more than 200 m ind depth from surface, the high horizontal stress components the horizontal stress ratio(K) greater than 2.50 were observed. And the overall investigation results showed a good agreement with the previously performed test.

Characteristics of in situ stress regime measured by hydraulic fracturing technique and its application on tunnel design (현지암반 초기지압의 분포특성 및 암반터널설계에의 적용)

  • Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.7 no.4
    • /
    • pp.323-333
    • /
    • 1997
  • A rock mass is usually classified by the results of geological survey and laboratory tests on rock specimens in order to obtain the adequate properties for the numerical analysis. For these purposes a rock mass strength is estimated based on the empirical criterion proposed by Hoek and Brown and a modulus of deformation is taken with the empirical relations developed by Bieniawski, Serafim and Pereira. In addition, the $K_o$ value which is the ratio of the horizontal stress to the vertical stress is one of the most important input data in the numerical analysis. Its role on a tunnel stability analysis could be verified with the numerical results taken by a finite difference code or a distinct element code. However, a deduced value used to be applied for the $K_o$ value in most of tunnel designs, even though the patterns of stress tensor are variable with regions and depths. Thus in situ stresses were measured by a hydraulic fracturing technique on several tunnel sites and applied directly to the tunnel design for the enhancement of its precision. With those informations on in situ stresses, the safe design should be obtained economically on the road or subway tunnels.

  • PDF

Study on characteristics of initial rock stress state at shallow depth of the gneiss region in the central part of seoul (서울 중심부 편마암 분포지역 저심도 구간의 암반 초기응력 분포특성 연구)

  • Bae, Seong-ho;Jeon, Seok-won;Choi, Yong-Kun;Kim, Jae-min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.147-159
    • /
    • 2003
  • Since early in the 90's, as the need for construction of underground rock structures has been largely increased, the in-situ rock stress measurement has been widely carried out to provide the quantitative information on the initial stress state of test site at the design stage of underground rock structures. Among the diverse method developed for measuring rock stress, hydraulic fracturing method is most popularly used because it is applicable at pre-construction stage and has no limit in testing depth. In this paper a study on initial rock stress state at shallow depth of the plain gneiss region in the central part of Seoul was performed on the basis of the in-situ hydraulic fracturing stress measurement results from the 11 test boreholes. And overall characteristics of the initial stress field of the study area are discussed.

  • PDF