• Title/Summary/Keyword: Design of algorithm

Search Result 10,373, Processing Time 0.041 seconds

Application of OGC WPS 2.0 to Geo-Spatial Web Services (공간정보 웹 서비스에서 OGC WPS 2.0 적용)

  • YOON, Goo-Seon;LEE, Ki-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.16-28
    • /
    • 2016
  • Advancing geo-spatial web technologies and their applications require compatible and interoperable heterogeneous browsers and platforms. Reduction of common or supporting components for web-based system development is also necessary. If properly understood and applied, OGC-based standards can be utilized as effective solutions for these problems. Thus, OGC standards are central to the design and development of web-based geo-spatial systems, and are particularly applicable to web services, which contain data processing modules. However, the application for OGC WPS 2.0 is at an early stage as compared with other OGC standards; thus, this study describes a test implementation of a web-based geo-spatial processing system with OGC WPS 2.0 focused on asynchronous processing functionality. While a binary thresholding algorithm was tested in this system, further experiments with other processing modules can be performed on requests for many types of processing from multiple users. The client system of the implemented product was based on open sources such as jQuery and OpenLayers, and server-side running on Spring framework also used various types of open sources such as ZOO project, and GeoServer. The results of geo-spatial image processing by this system implies further applicability and extensibility of OGC WPS 2.0 on user interfaces for practical applications.

A Method of Assigning Weight Values for Qualitative Attributes in CBR Cost Model (사례기반추론 코스트 모델의 정성변수 속성가중치 산정방법)

  • Lee, Hyun-Soo;Kim, Soo-Young;Park, Moon-Seo;Ji, Sae-Hyun;Seong, Ki-Hoon;Pyeon, Jae-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.1
    • /
    • pp.53-61
    • /
    • 2011
  • For construction projects, the importance of early cost estimates is highly recognized by the project team and sponsoring organization because early cost estimates are frequently a foundation of business decisions as well as a basis for identifying any changes as the project progresses from design to construction. However, it is difficult to accurately estimate construction cost in the early stage of a project due to various uncertainties in construction. To deal with these uncertainties, cost estimates should be made several times over the course of the project. In particular, early cost estimates are essential process for successful project management. For accurate construction cost estimates, it is necessary to compare cost estimates with actual costs based on historical project data. In this context, case-based reasoning (CBR), which is the process of solving new problems based on the solutions of similar past problems, can be considered as an effective method for cost estimating. To obtain this, it is also required to define the attribute similarities and the attribute weights. However, no existing method is capable of determining attribute weights of qualitative variables. Consequently, it has been a well-known barrier of accurate early cost estimates. Using Genetic Algorithms (GA), this research suggests the method of determining the attribute weight of qualitative variables. Based on building project case studies, the proposed methodology was validated.

Method of BeiDou Pseudorange Correction for Multi-GNSS Augmentation System (멀티 GNSS 보정시스템을 위한 BeiDou 의사거리 보정기법)

  • Seo, Ki-Yeol;Kim, Young-Ki;Jang, Won-Seok;Park, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2307-2314
    • /
    • 2015
  • This paper focuses on the generation algorithm of BeiDou pseudorange correction (PRC) and simulation based performance verification for design of Differential Global Navigation Satellite System (DGNSS) reference station and integrity monitor (RSIM) in order to prepare for recapitalization of DGNSS. First of all, it discusses the International standard on DGNSS RSIM, based on the interface control document (ICD) for BeiDou, estimates the satellite position using satellite clock offset and user receiver clock offset, and the system time offset between Global Positioning System (GPS) and BeiDou. Using the performance verification platform interfaced with GNSS (GPS/BeiDou) simulator, it calculates the BeiDou pseudorange corrections , compares the results of position accuracy with GPS/DGPS. As the test results, this paper verified to meet the performance of position accuracy for DGNSS RSIM operation required on Radio Technical Commission for Maritime Services (RTCM) standard.

Modeling and Application Research of Zero Crossing Detection Circuit (Zero Crossing Detection 회로 Modeling 및 응용연구)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.143-148
    • /
    • 2020
  • In the case of a system that detects and controls the phase of an alternating voltage, the analog control method compensates the phase offset part by filtering for the detected phase and applies it to the control. However, in the digital control method, precise control cannot be achieved due to an error between the operating frequency of the microprocessor or the microcontroller and the input phase time when controlled using such phase detection. In general, when the method used is a certain time, the accumulated error is compensated and adjusted at random. To solve this problem, a method of detecting a zero point in real time and compensating for the operating frequency of the microprocessor is needed. Therefore, the research to be performed in this paper to reduce these errors and apply them to precise digital control is as follows. 1) Research on how to implement Zero Crossing Detection algorithm through simulation modeling to compensate the zero point to match the operating frequency through detection. 2) A study on the method of detecting zero points in real time through the Zero Crossing Detection design using a microcontroller and compensating for the operating frequency of the microprocessor. 3) A study on the estimation of the rotor position of BLDC motors using the Zero Crossing Detection circuit.

Smart Camera Technology to Support High Speed Video Processing in Vehicular Network (차량 네트워크에서 고속 영상처리 기반 스마트 카메라 기술)

  • Son, Sanghyun;Kim, Taewook;Jeon, Yongsu;Baek, Yunju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.152-164
    • /
    • 2015
  • A rapid development of semiconductors, sensors and mobile network technologies has enable that the embedded device includes high sensitivity sensors, wireless communication modules and a video processing module for vehicular environment, and many researchers have been actively studying the smart car technology combined on the high performance embedded devices. The vehicle is increased as the development of society, and the risk of accidents is increasing gradually. Thus, the advanced driver assistance system providing the vehicular status and the surrounding environment of the vehicle to the driver using various sensor data is actively studied. In this paper, we design and implement the smart vehicular camera device providing the V2X communication and gathering environment information. And we studied the method to create the metadata from a received video data and sensor data using video analysis algorithm. In addition, we invent S-ROI, D-ROI methods that set a region of interest in a video frame to improve calculation performance. We performed the performance evaluation for two ROI methods. As the result, we confirmed the video processing speed that S-ROI is 3.0 times and D-ROI is 4.8 times better than a full frame analysis.

A Study on Tracking Control of Omni-Directional Mobile Robot Using Fuzzy Multi-Layered Controller (퍼지 다층 제어기를 이용한 전방향 이동로봇의 추적제어에 관한 연구)

  • Kim, Sang-Dae;Kim, Seung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1786-1795
    • /
    • 2011
  • The trajectory control for omni-directional mobile robot is not easy. Especially, the tracking control which system uncertainty problem is included is much more difficult. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy multi-layered algorithm. The fuzzy control method is able to solve the problems of classical adaptive controller and conventional fuzzy adaptive controllers. It explains the architecture of a fuzzy adaptive controller using the robust property of a fuzzy controller. The basic idea of new adaptive control scheme is that an adaptive controller can be constructed with parallel combination of robust controllers. This new adaptive controller uses a fuzzy multi-layered architecture which has several independent fuzzy controllers in parallel, each with different robust stability area. Out of several independent fuzzy controllers, the most suited one is selected by a system identifier which observes variations in the controlled system parameter. This paper proposes a design procedure which can be carried out mathematically and systematically from the model of a controlled system; related mathematical theorems and their proofs are also given. Finally, the good performance of the developed mobile robot is confirmed through live tests of path control task.

Design of Immersive Walking Interaction Using Deep Learning for Virtual Reality Experience Environment of Visually Impaired People (시각 장애인 가상현실 체험 환경을 위한 딥러닝을 활용한 몰입형 보행 상호작용 설계)

  • Oh, Jiseok;Bong, Changyun;Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.11-20
    • /
    • 2019
  • In this study, a novel virtual reality (VR) experience environment is proposed for enabling walking adaptation of visually impaired people. The core of proposed VR environment is based on immersive walking interactions and deep learning based braille blocks recognition. To provide a realistic walking experience from the perspective of visually impaired people, a tracker-based walking process is designed for determining the walking state by detecting marching in place, and a controller-based VR white cane is developed that serves as the walking assistance tool for visually impaired people. Additionally, a learning model is developed for conducting comprehensive decision-making by recognizing and responding to braille blocks situated on roads that are followed during the course of directions provided by the VR white cane. Based on the same, a VR application comprising an outdoor urban environment is designed for analyzing the VR walking environment experience. An experimental survey and performance analysis were also conducted for the participants. Obtained results corroborate that the proposed VR walking environment provides a presence of high-level walking experience from the perspective of visually impaired people. Furthermore, the results verify that the proposed learning algorithm and process can recognize braille blocks situated on sidewalks and roadways with high accuracy.

The bidirectional DC module type PCS design for the System Inter Connection PV-ESS of Secure to Expandability (계통 연계 PV-ESS 확장성 확보를 위한 병렬 DC-모듈형 PCS 설계)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Choi, Byung-Sang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.56-69
    • /
    • 2021
  • In this paper, the PV system with a link to the commercial system needs some advantages like small capacity, high power factor, high reliability, low harmonic output, maximum power operation of solar cell, and low cost, etc. as well as the properties of inverter. To transfer the PV energy of photovoltaic power generation system to the system and load, it requires PCS in both directions. The purpose of this paper is to confirm the stable power supply through the load leveling by presenting the PCS considering ESS of photovoltaic power generation. In order to achieve these purpose, 5 step process of operation mode algorithm were used according to the solar insolation amount and load capacity and the controller for charging/ discharging control was designed. For bidirectional and effective energy transfer, the bidirectional converter and battery at DC-link stage were connected and the DC-link voltage and inverter output voltage through the interactive inverter were controlled. In order to prove the validity of the suggested system, the simulation using PSIM was performed and were reviewed for its validity and stability. The 3[kW] PCS was manufactured and its test was conducted in order to check this situation. In addition, the system characteristics suggested through the test results was verified and the PCS system presented in this study was excellent and stronger than that of before system.

Real-Time Joint Animation Production and Expression System using Deep Learning Model and Kinect Camera (딥러닝 모델과 Kinect 카메라를 이용한 실시간 관절 애니메이션 제작 및 표출 시스템 구축에 관한 연구)

  • Kim, Sang-Joon;Lee, Yu-Jin;Park, Goo-man
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.269-282
    • /
    • 2021
  • As the distribution of 3D content such as augmented reality and virtual reality increases, the importance of real-time computer animation technology is increasing. However, the computer animation process consists mostly of manual or marker-attaching motion capture, which requires a very long time for experienced professionals to obtain realistic images. To solve these problems, animation production systems and algorithms based on deep learning model and sensors have recently emerged. Thus, in this paper, we study four methods of implementing natural human movement in deep learning model and kinect camera-based animation production systems. Each method is chosen considering its environmental characteristics and accuracy. The first method uses a Kinect camera. The second method uses a Kinect camera and a calibration algorithm. The third method uses deep learning model. The fourth method uses deep learning model and kinect. Experiments with the proposed method showed that the fourth method of deep learning model and using the Kinect simultaneously showed the best results compared to other methods.

Atmospheric Disturbance Simulation in Adaptive Optics: from Theory to Practice (적응광학에서의 대기 외란 모사: 이론에서 실제 적용까지)

  • Jun Ho Lee;Ji Hyun Pak;Ji Yong Joo;Seok Gi Han;Yongsuk Jung;Youngsoo Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.5
    • /
    • pp.199-209
    • /
    • 2024
  • Predicting the performance of adaptive optics systems is a crucial step in their design and analysis. First-order prediction methods, based primarily on several assumptions and scaling laws, are commonly used. These methods must account for various parameters and error sources, such as the intensity and profile of atmospheric turbulence, fitting errors based on the resolution of the wavefront sensor and deformable mirror, wavefront-sensor noise propagated through the wavefront-reconstruction algorithm, servo lag due to the finite bandwidth of the control loop, and anisoplanatism caused by the arrangement of natural and laser guide stars. However, since first-order performance-prediction methods based on certain assumptions can sometimes yield results that deviate from real-world performance, evaluation through computational simulations and closed-loop tests on a testbed is necessary. Additionally, an atmospheric simulator is required for closed-loop testing, which must adequately simulate the spatial and temporal characteristics of atmospheric disturbances. This paper aims to present an overview of the theory of atmospheric disturbance simulators, as well as their implementation in computational simulation and hardware.