• 제목/요약/키워드: Design of Value Engineering

검색결과 3,276건 처리시간 0.031초

위험도기반 최대예상지진에 근거한 국내 내진설계 지도 (Domestic Seismic Design Maps Based on Risk-Targeted Maximum- Considered Earthquakes)

  • 신동현;김형준
    • 한국지진공학회논문집
    • /
    • 제19권3호
    • /
    • pp.93-102
    • /
    • 2015
  • This study evaluates collapse probabilities of structures which are designed according to a domestic seismic design code, KBC2009. In evaluating their collapse probabilities, to do this, probabilistic distribution models for seismic hazard and structural capacity are required. In this paper, eight major cities in Korea are selected and the demand probabilistic distribution of each city is obtained from the uniform seismic hazard. The probabilistic distribution for the structural capacity is assumed to follow a underlying design philosophy implicitly defined in ASCE 7-10. With the assumptions, the structural collapse probability in 50 years is evaluated based on the concept of a risk integral. This paper then defines an mean value of the collapse probabilities in 50 years of the selected major cities as the target risk. Risk-targeted spectral accelerations are finally suggested by modifying a current mapped spectral acceleration to meet the target risk.

사출금형 냉각수의 유동 패턴이 사출성형품의 변형에 미치는 영향 (Effect of Flow Pattern of Coolant for Injection Mold on the Deformation of Injection Molding)

  • 최계광;홍석무;한성렬
    • 한국기계가공학회지
    • /
    • 제14권4호
    • /
    • pp.92-99
    • /
    • 2015
  • The deformation of injection molding is seriously affected by injection molding conditions, such as melt and mold temperature and injection and holding pressure. In these conditions, the mold temperature is controlled by flowing coolant, which can be classified by the Reynolds number in the mold-cooling channel. In this study, the deformation of the automotive side molding according to the variation of the Reynolds number in the coolant was simulated by Moldflow. In the results, as the Reynolds number was increased, the mold cooling was also increased. However, when the Reynolds number exceeded a certain range, the mold cooling was not increased further. In addition to the Moldflow verification, the mold cooling by the coolant was simulated by CFX. The CFX results confirmed that the Reynolds number significantly influenced the mold cooling. The coolant, which has a high Reynolds number value, quickly cooled the mold. However, the coolant, which has a low Reynolds number value, such as 0 points, hardly cooled the mold. In an injection molding experiment, as the Reynolds number was high, the deformation of the moldings was reduced. The declining tendency of the deformation was similar to the Moldflow results.

Design and analysis of offshore wind structure

  • Young-Suk You;Min-Young Sun;Young-Ho Lee
    • Advances in Computational Design
    • /
    • 제8권3호
    • /
    • pp.191-217
    • /
    • 2023
  • The objective of this study was to evaluate the foundation structure of a 3.6-MW wind turbine generator (WTG) installed offshore in Western Korea. The ultimate limit state (ULS) and fatigue limit state (FLS) of the multi-pile steel foundation (MSF) installed at the Saemangeum offshore wind farm were structurally investigated using the finite element (FE) software, ANSYS Workbench 19.0. According to the ULS analysis, no plastic deformation was found in any of the components constituting the substructure. At the same time, the maximal stress value reached the calculation limit of 335 MPa. According to the FLS results, the stress concentration factor (SCF) ranged from 1.00 to 1.88 in all components. The results of this study can be applied to determine the optimal design for MSFs.

복합형상 부품 가공용 라인센터의 경량화를 위한 형상 최적화에 관한 연구 (Shape Optimization for Lightweight of the Line Center for Processing Complex Shape Parts)

  • 박도현;정호인;김상원;이춘만
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.86-92
    • /
    • 2021
  • As interest and demand for high value-added industries, including the global automobile and aerospace industries, have increased recently, demand for line centers with excellent performance that can respond to the production system for producing high value-added products is also rapidly increasing. A line center improves productivity based on the installed area using a multi-spindle compared to a conventional machining center. However, as the number of spindles increases, the weight increases and results in structural problems owing to the heat and vibration generated by each spindle. Therefore, it is necessary to improve machining precision through the structural improvement of the line center. This study presents research on the stabilization design of the line center through structural stability analysis through structural analysis to develop a compact multi-axis line center. An optimization model of the line center has been proposed to improve the processing precision and increase the rigidity by performing weight reduction based on the structural analysis results.

유전자 알고리즘을 이용한 B-spline 곡면 피팅 (B-spline Surface Fitting using Genetic Algorithm)

  • ;김동준;민경철;표상우
    • 대한조선학회논문집
    • /
    • 제46권1호
    • /
    • pp.87-95
    • /
    • 2009
  • The applicability of optimization techniques for hull surface fitting has been important in the ship design process. In this research, the Genetic Algorithm has been used as a searching technique for solving surface fitting problem and minimizing errors between B-spline surface and the ship's offset data. The encoded design variables are the location of the vertex points and parametric values. The sufficient accuracy in surface fitting implies not only various techniques for computer-aided design, but also the future production design.

Using Artificial Neural Network in the reverse design of a composite sandwich structure

  • Mortda M. Sahib;Gyorgy Kovacs
    • Structural Engineering and Mechanics
    • /
    • 제85권5호
    • /
    • pp.635-644
    • /
    • 2023
  • The design of honeycomb sandwich structures is often challenging because these structures can be tailored from a variety of possible cores and face sheets configurations, therefore, the design of sandwich structures is characterized as a time-consuming and complex task. A data-driven computational approach that integrates the analytical method and Artificial Neural Network (ANN) is developed by the authors to rapidly predict the design of sandwich structures for a targeted maximum structural deflection. The elaborated ANN reverse design approach is applied to obtain the thickness of the sandwich core, the thickness of the laminated face sheets, and safety factors for composite sandwich structure. The required data for building ANN model were obtained using the governing equations of sandwich components in conjunction with the Monte Carlo Method. Then, the functional relationship between the input and output features was created using the neural network Backpropagation (BP) algorithm. The input variables were the dimensions of the sandwich structure, the applied load, the core density, and the maximum deflection, which was the reverse input given by the designer. The outstanding performance of reverse ANN model revealed through a low value of mean square error (MSE) together with the coefficient of determination (R2) close to the unity. Furthermore, the output of the model was in good agreement with the analytical solution with a maximum error 4.7%. The combination of reverse concept and ANN may provide a potentially novel approach in designing of sandwich structures. The main added value of this study is the elaboration of a reverse ANN model, which provides a low computational technique as well as savestime in the design or redesign of sandwich structures compared to analytical and finite element approaches.

Design and SAR Analysis of Wearable Antenna on Various Parts of Human Body, Using Conventional and Artificial Ground Planes

  • Ali, Usman;Ullah, Sadiq;Khan, Jalal;Shafi, Muhammad;Kamal, Babar;Basir, Abdul;Flint, James A;Seager, Rob D.
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.317-328
    • /
    • 2017
  • This paper presents design and specific absorption rate analysis of a 2.4 GHz wearable patch antenna on a conventional and electromagnetic bandgap (EBG) ground planes, under normal and bent conditions. Wearable materials are used in the design of the antenna and EBG surfaces. A woven fabric (Zelt) is used as a conductive material and a 3 mm thicker Wash Cotton is used as a substrate. The dielectric constant and tangent loss of the substrate are 1.51 and 0.02 respectively. The volume of the proposed antenna is $113{\times}96.4{\times}3mm^3$. The metamaterial surface is used as a high impedance surface which shields the body from the hazards of electromagnetic radiations to reduce the Specific Absorption Rate (SAR). For on-body analysis a three layer model (containing skin, fats and muscles) of human arm is used. Antenna employing the EBG ground plane gives safe value of SAR (i.e. 1.77W/kg<2W/kg), when worn on human arm. This value is obtained using the safe limit of 2 W/kg, averaged over 10g of tissue, specified by the International Commission of Non Ionization Radiation Protection (ICNIRP). The SAR is reduced by 83.82 % as compare to the conventional antenna (8.16 W/kg>2W/kg). The efficiency of the EBG based antenna is improved from 52 to 74 %, relative to the conventional counterpart. The proposed antenna can be used in wearable electronics and smart clothing.

파라미터 해석을 통한 차량 성능 예측 기법 연구 (Study on the Prediction Technique of Vehicle Performance using Parameter Analysis)

  • 김기창;김찬묵;김진택
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.647-653
    • /
    • 2009
  • Taguchi parameter design is an approach to reducing performance variation of quality characteristic value in products and processes. Taguchi has used SN (Signal to Noise) ratio to achieve the appropriate set of operating conditions where variability around target is low in the Taguchi parameter design. This paper describes the prediction technique of vehicle performance using parameter analysis to reduce man hour and test development period as well as to achieve stable NVH performance. Design engineer could efficiently decide the design variable using parameter analysis database in early design stage. These improvements can reduce the time needed to develop better vehicles.

  • PDF

반응 표면 분석법을 이용한 일체형 흡착제의 합성 조건 최적화 (Optimization of Synthesis Condition of Monolithic Sorbent Using Response Surface Methodology)

  • 박하은;노경호
    • 공업화학
    • /
    • 제24권3호
    • /
    • pp.299-304
    • /
    • 2013
  • Box-Behnken design (BBD) 방법은 일체형 흡착제의 합성조건을 최적화하기 위해 사용되었다. 단량체(monomer)의 양(mL), 가교제(crosslink)의 양(mL), porogen의 양(mL)에 대한 효과를 조사했다. 실험 값은 여러 회귀분석 및 통계적인 방법에 의해 2차 다항 방정식을 얻었다. 이 모델의 결정계수($R^2$)는 0.9915이고 결정계수의 p value는 0.0001보다 작은 값으로 모델이 매우 유의미하다는 것을 나타낸다. RSM 모델에 의해 예측된 최적의 일체형 흡착제 합성조건은 단량체의 양 0.30 mL, 가교제의 양 1.40 mL, porogen의 양 1.47 mL이고 이 조건 아래서 합성된 일체형 흡착제의 양은 2120.15 mg이다. 이 결과는 이 모델이 적절하다는 것을 나타내었다.

An evolutionary algorithm for optimal damper placement to minimize interstorey-drift transfer function in shear building

  • Fujita, Kohei;Yamamoto, Kaoru;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제1권3호
    • /
    • pp.289-306
    • /
    • 2010
  • A gradient-based evolutionary optimization methodology is presented for finding the optimal design of viscous dampers to minimize an objective function defined for a linear multi-storey structure. The maximum value along height of the transfer function amplitudes for the interstorey drifts is taken as the objective function. Since the ground motion includes various uncertainties, the optimal damper placement may be different depending on the ground motion used for design. Furthermore, the transfer function treated as the objective function depends on the properties of structural parameters and added dampers. This implies that a more robust damper design is desired. A reliable and robust damping design system against any unpredictable ground motions can be provided by minimizing the maximum transfer function. Such design system is proposed in this paper.