• Title/Summary/Keyword: Design of System

Search Result 53,387, Processing Time 0.083 seconds

The Process of Establishing a Japanese-style Garden and Embodying Identity in Modern Japan (일본 근대 시기 일본풍 정원의 확립과정과 정체성 구현)

  • An, Joon-Young;Jun, Da-Seul
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.3
    • /
    • pp.59-66
    • /
    • 2023
  • This study attempts to examine the process of establishing a Japanese-style garden in the modern period through the perspectives of garden designers, spatial composition, spatial components, and materials used in their works, and to use it as data for embodying the identity of Korean garden. The results are as follows: First, by incorporating elements associated with Koreanness into the modern garden culture, there are differences in location, presence, and subjectivity when compared to Japan. This reflects Japan's relatively seamless cultural continuity compared to Korea's cultural disconnection during the modern period. Second, prior to the modern period, Japan's garden culture spread and continued to develop throughout the country without significant interruptions. However, during the modern period, the Meiji government promoted the policy of 'civilization and enlightenment (Bunmei-kaika, 文明開化)' and introduced advanced European and American civilizations, leading to the popularity of Western-style architectural techniques. Unfortunately, the rapid introduction of Western culture caused the traditional Japanese culture to be overshadowed. In 1879, British architect Josiah Condor guided Japanese architects and introduced atelier and traditional designs of Japanese gardens into the design. The garden style of Ogawa Jihei VII, a garden designer in Kyoto during the Meiji and Taisho periods, was accepted by influential political and business leaders who sought to preserve Japan's traditional culture. And a protection system of garden was established through the preparation of various laws and regulations. Third, as a comprehensive analysis of Japanese modern gardens, the examination of garden designers, Japanese components, materials, elements, and the Japanese-style showed that Yamagata Aritomo, Ogawa Jihei VII, and Mirei Shigemori were representative garden designers who preserved the Japanese-style in their gardens. They introduced features such as the creation of a Daejicheon(大池泉) garden, which involves a large pond on a spacious land, as well as the naturalistic borrowed scenery method and water flow. Key components of Japanese-style gardens include the use of turf, winding garden paths, and the variation of plant species. Fourth, an analysis of the Japanese-style elements in the target sites revealed that the use of flowing water had the highest occurrence at 47.06% among the individual elements of spatial composition. Daejicheon and naturalistic borrowed scenery were also shown. The use of turf and winding paths were at 65.88% and 78.82%, respectively. The alteration of tree species was relatively less common at 28.24% compared to the application of turf or winding paths. Fifth, it is essential to discover more gardens from the modern period and meticulously document the creators or owners of the gardens, the spatial composition, spatial components, and materials used. This information will be invaluable in uncovering the identity of our own gardens. This study was conducted based on the analysis of the process of establishing the Japanese-style during Japan's modern period, utilizing examples of garden designers and gardens. While this study has limitations, such as the absence of in-depth research and more case studies or specific techniques, it sets the stage for future exploration.

Machine learning-based corporate default risk prediction model verification and policy recommendation: Focusing on improvement through stacking ensemble model (머신러닝 기반 기업부도위험 예측모델 검증 및 정책적 제언: 스태킹 앙상블 모델을 통한 개선을 중심으로)

  • Eom, Haneul;Kim, Jaeseong;Choi, Sangok
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.105-129
    • /
    • 2020
  • This study uses corporate data from 2012 to 2018 when K-IFRS was applied in earnest to predict default risks. The data used in the analysis totaled 10,545 rows, consisting of 160 columns including 38 in the statement of financial position, 26 in the statement of comprehensive income, 11 in the statement of cash flows, and 76 in the index of financial ratios. Unlike most previous prior studies used the default event as the basis for learning about default risk, this study calculated default risk using the market capitalization and stock price volatility of each company based on the Merton model. Through this, it was able to solve the problem of data imbalance due to the scarcity of default events, which had been pointed out as the limitation of the existing methodology, and the problem of reflecting the difference in default risk that exists within ordinary companies. Because learning was conducted only by using corporate information available to unlisted companies, default risks of unlisted companies without stock price information can be appropriately derived. Through this, it can provide stable default risk assessment services to unlisted companies that are difficult to determine proper default risk with traditional credit rating models such as small and medium-sized companies and startups. Although there has been an active study of predicting corporate default risks using machine learning recently, model bias issues exist because most studies are making predictions based on a single model. Stable and reliable valuation methodology is required for the calculation of default risk, given that the entity's default risk information is very widely utilized in the market and the sensitivity to the difference in default risk is high. Also, Strict standards are also required for methods of calculation. The credit rating method stipulated by the Financial Services Commission in the Financial Investment Regulations calls for the preparation of evaluation methods, including verification of the adequacy of evaluation methods, in consideration of past statistical data and experiences on credit ratings and changes in future market conditions. This study allowed the reduction of individual models' bias by utilizing stacking ensemble techniques that synthesize various machine learning models. This allows us to capture complex nonlinear relationships between default risk and various corporate information and maximize the advantages of machine learning-based default risk prediction models that take less time to calculate. To calculate forecasts by sub model to be used as input data for the Stacking Ensemble model, training data were divided into seven pieces, and sub-models were trained in a divided set to produce forecasts. To compare the predictive power of the Stacking Ensemble model, Random Forest, MLP, and CNN models were trained with full training data, then the predictive power of each model was verified on the test set. The analysis showed that the Stacking Ensemble model exceeded the predictive power of the Random Forest model, which had the best performance on a single model. Next, to check for statistically significant differences between the Stacking Ensemble model and the forecasts for each individual model, the Pair between the Stacking Ensemble model and each individual model was constructed. Because the results of the Shapiro-wilk normality test also showed that all Pair did not follow normality, Using the nonparametric method wilcoxon rank sum test, we checked whether the two model forecasts that make up the Pair showed statistically significant differences. The analysis showed that the forecasts of the Staging Ensemble model showed statistically significant differences from those of the MLP model and CNN model. In addition, this study can provide a methodology that allows existing credit rating agencies to apply machine learning-based bankruptcy risk prediction methodologies, given that traditional credit rating models can also be reflected as sub-models to calculate the final default probability. Also, the Stacking Ensemble techniques proposed in this study can help design to meet the requirements of the Financial Investment Business Regulations through the combination of various sub-models. We hope that this research will be used as a resource to increase practical use by overcoming and improving the limitations of existing machine learning-based models.

Feasibility of Deep Learning Algorithms for Binary Classification Problems (이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가)

  • Kim, Kitae;Lee, Bomi;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.95-108
    • /
    • 2017
  • Recently, AlphaGo which is Bakuk (Go) artificial intelligence program by Google DeepMind, had a huge victory against Lee Sedol. Many people thought that machines would not be able to win a man in Go games because the number of paths to make a one move is more than the number of atoms in the universe unlike chess, but the result was the opposite to what people predicted. After the match, artificial intelligence technology was focused as a core technology of the fourth industrial revolution and attracted attentions from various application domains. Especially, deep learning technique have been attracted as a core artificial intelligence technology used in the AlphaGo algorithm. The deep learning technique is already being applied to many problems. Especially, it shows good performance in image recognition field. In addition, it shows good performance in high dimensional data area such as voice, image and natural language, which was difficult to get good performance using existing machine learning techniques. However, in contrast, it is difficult to find deep leaning researches on traditional business data and structured data analysis. In this study, we tried to find out whether the deep learning techniques have been studied so far can be used not only for the recognition of high dimensional data but also for the binary classification problem of traditional business data analysis such as customer churn analysis, marketing response prediction, and default prediction. And we compare the performance of the deep learning techniques with that of traditional artificial neural network models. The experimental data in the paper is the telemarketing response data of a bank in Portugal. It has input variables such as age, occupation, loan status, and the number of previous telemarketing and has a binary target variable that records whether the customer intends to open an account or not. In this study, to evaluate the possibility of utilization of deep learning algorithms and techniques in binary classification problem, we compared the performance of various models using CNN, LSTM algorithm and dropout, which are widely used algorithms and techniques in deep learning, with that of MLP models which is a traditional artificial neural network model. However, since all the network design alternatives can not be tested due to the nature of the artificial neural network, the experiment was conducted based on restricted settings on the number of hidden layers, the number of neurons in the hidden layer, the number of output data (filters), and the application conditions of the dropout technique. The F1 Score was used to evaluate the performance of models to show how well the models work to classify the interesting class instead of the overall accuracy. The detail methods for applying each deep learning technique in the experiment is as follows. The CNN algorithm is a method that reads adjacent values from a specific value and recognizes the features, but it does not matter how close the distance of each business data field is because each field is usually independent. In this experiment, we set the filter size of the CNN algorithm as the number of fields to learn the whole characteristics of the data at once, and added a hidden layer to make decision based on the additional features. For the model having two LSTM layers, the input direction of the second layer is put in reversed position with first layer in order to reduce the influence from the position of each field. In the case of the dropout technique, we set the neurons to disappear with a probability of 0.5 for each hidden layer. The experimental results show that the predicted model with the highest F1 score was the CNN model using the dropout technique, and the next best model was the MLP model with two hidden layers using the dropout technique. In this study, we were able to get some findings as the experiment had proceeded. First, models using dropout techniques have a slightly more conservative prediction than those without dropout techniques, and it generally shows better performance in classification. Second, CNN models show better classification performance than MLP models. This is interesting because it has shown good performance in binary classification problems which it rarely have been applied to, as well as in the fields where it's effectiveness has been proven. Third, the LSTM algorithm seems to be unsuitable for binary classification problems because the training time is too long compared to the performance improvement. From these results, we can confirm that some of the deep learning algorithms can be applied to solve business binary classification problems.

An Analysis on the Conditions for Successful Economic Sanctions on North Korea : Focusing on the Maritime Aspects of Economic Sanctions (대북경제제재의 효과성과 미래 발전 방향에 대한 고찰: 해상대북제재를 중심으로)

  • Kim, Sang-Hoon
    • Strategy21
    • /
    • s.46
    • /
    • pp.239-276
    • /
    • 2020
  • The failure of early economic sanctions aimed at hurting the overall economies of targeted states called for a more sophisticated design of economic sanctions. This paved way for the advent of 'smart sanctions,' which target the supporters of the regime instead of the public mass. Despite controversies over the effectiveness of economic sanctions as a coercive tool to change the behavior of a targeted state, the transformation from 'comprehensive sanctions' to 'smart sanctions' is gaining the status of a legitimate method to impose punishment on states that do not conform to international norms, the nonproliferation of weapons of mass destruction in this particular context of the paper. The five permanent members of the United Nations Security Council proved that it can come to an accord on imposing economic sanctions over adopting resolutions on waging military war with targeted states. The North Korean nuclear issue has been the biggest security threat to countries in the region, even for China out of fear that further developments of nuclear weapons in North Korea might lead to a 'domino-effect,' leading to nuclear proliferation in the Northeast Asia region. Economic sanctions had been adopted by the UNSC as early as 2006 after the first North Korean nuclear test and has continually strengthened sanctions measures at each stage of North Korean weapons development. While dubious of the effectiveness of early sanctions on North Korea, recent sanctions that limit North Korea's exports of coal and imports of oil seem to have an impact on the regime, inducing Kim Jong-un to commit to peaceful talks since 2018. The purpose of this paper is to add a variable to the factors determining the success of economic sanctions on North Korea: preventing North Korea's evasion efforts by conducting illegal transshipments at sea. I first analyze the cause of recent success in the economic sanctions that led Kim Jong-un to engage in talks and add the maritime element to the argument. There are three conditions for the success of the sanctions regime, and they are: (1) smart sanctions, targeting commodities and support groups (elites) vital to regime survival., (2) China's faithful participation in the sanctions regime, and finally, (3) preventing North Korea's maritime evasion efforts.

A Comparative Analysis of Social Commerce and Open Market Using User Reviews in Korean Mobile Commerce (사용자 리뷰를 통한 소셜커머스와 오픈마켓의 이용경험 비교분석)

  • Chae, Seung Hoon;Lim, Jay Ick;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.53-77
    • /
    • 2015
  • Mobile commerce provides a convenient shopping experience in which users can buy products without the constraints of time and space. Mobile commerce has already set off a mega trend in Korea. The market size is estimated at approximately 15 trillion won (KRW) for 2015, thus far. In the Korean market, social commerce and open market are key components. Social commerce has an overwhelming open market in terms of the number of users in the Korean mobile commerce market. From the point of view of the industry, quick market entry, and content curation are considered to be the major success factors, reflecting the rapid growth of social commerce in the market. However, academics' empirical research and analysis to prove the success rate of social commerce is still insufficient. Henceforward, it is to be expected that social commerce and the open market in the Korean mobile commerce will compete intensively. So it is important to conduct an empirical analysis to prove the differences in user experience between social commerce and open market. This paper is an exploratory study that shows a comparative analysis of social commerce and the open market regarding user experience, which is based on the mobile users' reviews. Firstly, this study includes a collection of approximately 10,000 user reviews of social commerce and open market listed Google play. A collection of mobile user reviews were classified into topics, such as perceived usefulness and perceived ease of use through LDA topic modeling. Then, a sentimental analysis and co-occurrence analysis on the topics of perceived usefulness and perceived ease of use was conducted. The study's results demonstrated that social commerce users have a more positive experience in terms of service usefulness and convenience versus open market in the mobile commerce market. Social commerce has provided positive user experiences to mobile users in terms of service areas, like 'delivery,' 'coupon,' and 'discount,' while open market has been faced with user complaints in terms of technical problems and inconveniences like 'login error,' 'view details,' and 'stoppage.' This result has shown that social commerce has a good performance in terms of user service experience, since the aggressive marketing campaign conducted and there have been investments in building logistics infrastructure. However, the open market still has mobile optimization problems, since the open market in mobile commerce still has not resolved user complaints and inconveniences from technical problems. This study presents an exploratory research method used to analyze user experience by utilizing an empirical approach to user reviews. In contrast to previous studies, which conducted surveys to analyze user experience, this study was conducted by using empirical analysis that incorporates user reviews for reflecting users' vivid and actual experiences. Specifically, by using an LDA topic model and TAM this study presents its methodology, which shows an analysis of user reviews that are effective due to the method of dividing user reviews into service areas and technical areas from a new perspective. The methodology of this study has not only proven the differences in user experience between social commerce and open market, but also has provided a deep understanding of user experience in Korean mobile commerce. In addition, the results of this study have important implications on social commerce and open market by proving that user insights can be utilized in establishing competitive and groundbreaking strategies in the market. The limitations and research direction for follow-up studies are as follows. In a follow-up study, it will be required to design a more elaborate technique of the text analysis. This study could not clearly refine the user reviews, even though the ones online have inherent typos and mistakes. This study has proven that the user reviews are an invaluable source to analyze user experience. The methodology of this study can be expected to further expand comparative research of services using user reviews. Even at this moment, users around the world are posting their reviews about service experiences after using the mobile game, commerce, and messenger applications.

Multi-Dimensional Analysis Method of Product Reviews for Market Insight (마켓 인사이트를 위한 상품 리뷰의 다차원 분석 방안)

  • Park, Jeong Hyun;Lee, Seo Ho;Lim, Gyu Jin;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.57-78
    • /
    • 2020
  • With the development of the Internet, consumers have had an opportunity to check product information easily through E-Commerce. Product reviews used in the process of purchasing goods are based on user experience, allowing consumers to engage as producers of information as well as refer to information. This can be a way to increase the efficiency of purchasing decisions from the perspective of consumers, and from the seller's point of view, it can help develop products and strengthen their competitiveness. However, it takes a lot of time and effort to understand the overall assessment and assessment dimensions of the products that I think are important in reading the vast amount of product reviews offered by E-Commerce for the products consumers want to compare. This is because product reviews are unstructured information and it is difficult to read sentiment of reviews and assessment dimension immediately. For example, consumers who want to purchase a laptop would like to check the assessment of comparative products at each dimension, such as performance, weight, delivery, speed, and design. Therefore, in this paper, we would like to propose a method to automatically generate multi-dimensional product assessment scores in product reviews that we would like to compare. The methods presented in this study consist largely of two phases. One is the pre-preparation phase and the second is the individual product scoring phase. In the pre-preparation phase, a dimensioned classification model and a sentiment analysis model are created based on a review of the large category product group review. By combining word embedding and association analysis, the dimensioned classification model complements the limitation that word embedding methods for finding relevance between dimensions and words in existing studies see only the distance of words in sentences. Sentiment analysis models generate CNN models by organizing learning data tagged with positives and negatives on a phrase unit for accurate polarity detection. Through this, the individual product scoring phase applies the models pre-prepared for the phrase unit review. Multi-dimensional assessment scores can be obtained by aggregating them by assessment dimension according to the proportion of reviews organized like this, which are grouped among those that are judged to describe a specific dimension for each phrase. In the experiment of this paper, approximately 260,000 reviews of the large category product group are collected to form a dimensioned classification model and a sentiment analysis model. In addition, reviews of the laptops of S and L companies selling at E-Commerce are collected and used as experimental data, respectively. The dimensioned classification model classified individual product reviews broken down into phrases into six assessment dimensions and combined the existing word embedding method with an association analysis indicating frequency between words and dimensions. As a result of combining word embedding and association analysis, the accuracy of the model increased by 13.7%. The sentiment analysis models could be seen to closely analyze the assessment when they were taught in a phrase unit rather than in sentences. As a result, it was confirmed that the accuracy was 29.4% higher than the sentence-based model. Through this study, both sellers and consumers can expect efficient decision making in purchasing and product development, given that they can make multi-dimensional comparisons of products. In addition, text reviews, which are unstructured data, were transformed into objective values such as frequency and morpheme, and they were analysed together using word embedding and association analysis to improve the objectivity aspects of more precise multi-dimensional analysis and research. This will be an attractive analysis model in terms of not only enabling more effective service deployment during the evolving E-Commerce market and fierce competition, but also satisfying both customers.

Analysis of Football Fans' Uniform Consumption: Before and After Son Heung-Min's Transfer to Tottenham Hotspur FC (국내 프로축구 팬들의 유니폼 소비 분석: 손흥민의 토트넘 홋스퍼 FC 이적 전후 비교)

  • Choi, Yeong-Hyeon;Lee, Kyu-Hye
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.91-108
    • /
    • 2020
  • Korea's famous soccer players are steadily performing well in international leagues, which led to higher interests of Korean fans in the international leagues. Reflecting the growing social phenomenon of rising interests on international leagues by Korean fans, the study examined the overall consumer perception in the consumption of uniform by domestic soccer fans and compared the changes in perception following the transfers of the players. Among others, the paper examined the consumer perception and purchase factors of soccer fans shown in social media, focusing on periods before and after the recruitment of Heung-Min Son to English Premier League's Tottenham Football Club. To this end, the EPL uniform is the collection keyword the paper utilized and collected consumer postings from domestic website and social media via Python 3.7, and analyzed them using Ucinet 6, NodeXL 1.0.1, and SPSS 25.0 programs. The results of this study can be summarized as follows. First, the uniform of the club that consistently topped the league, has been gaining attention as a popular uniform, and the players' performance, and the players' position have been identified as key factors in the purchase and search of professional football uniforms. In the case of the club, the actual ranking and whether the league won are shown to be important factors in the purchase and search of professional soccer uniforms. The club's emblem and the sponsor logo that will be attached to the uniform are also factors of interest to consumers. In addition, in the decision making process of purchase of a uniform by professional soccer fan, uniform's form, marking, authenticity, and sponsors are found to be more important than price, design, size, and logo. The official online store has emerged as a major purchasing channel, followed by gifts for friends or requests from acquaintances when someone travels to the United Kingdom. Second, a classification of key control categories through the convergence of iteration correlation analysis and Clauset-Newman-Moore clustering algorithm shows differences in the classification of individual groups, but groups that include the EPL's club and player keywords are identified as the key topics in relation to professional football uniforms. Third, between 2002 and 2006, the central theme for professional football uniforms was World Cup and English Premier League, but from 2012 to 2015, the focus has shifted to more interest of domestic and international players in the English Premier League. The subject has changed to the uniform itself from this time on. In this context, the paper can confirm that the major issues regarding the uniforms of professional soccer players have changed since Ji-Sung Park's transfer to Manchester United, and Sung-Yong Ki, Chung-Yong Lee, and Heung-Min Son's good performances in these leagues. The paper also identified that the uniforms of the clubs to which the players have transferred to are of interest. Fourth, both male and female consumers are showing increasing interest in Son's league, the English Premier League, which Tottenham FC belongs to. In particular, the increasing interest in Son has shown a tendency to increase interest in football uniforms for female consumers. This study presents a variety of researches on sports consumption and has value as a consumer study by identifying unique consumption patterns. It is meaningful in that the accuracy of the interpretation has been enhanced by using a cluster analysis via convergence of iteration correlation analysis and Clauset-Newman-Moore clustering algorithm to identify the main topics. Based on the results of this study, the clubs will be able to maximize its profits and maintain good relationships with fans by identifying key drivers of consumer awareness and purchasing for professional soccer fans and establishing an effective marketing strategy.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

Studies on the Roadside Revegetation and Landscape Reconstruction Measures (도로녹화(道路綠化) 및 도로조경기술개발(道路造景技術開発)에 관(関)한 연구(硏究))

  • Woo, Bo Myeong;Son, Doo Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.48 no.1
    • /
    • pp.1-24
    • /
    • 1980
  • One of the most important basic problems for developing the new techniques in the field of road landscape planting practices in Korea, is to clarify, analyse, and evaluate the existing technical level through actual field survey on the various kinds of planting techniques. This study is, therefore, aimed at the good grasp of detail essences of the existing level of road landscape planting techniques through field investigations of the executed sites. In this study, emphasized efforts are made to the detail analysis and systematic rearrangements of such main subjects as; 1) principles and functions of the road landscape planting techniques; 2) essential elements in planning of it; 3) advanced practices in execution of planting of it; 4) and improved methods in maintenance of plants and lands as an entire system of road landscape planting techniques. The road landscape planting techniques could be explained as the planting and landscaping practices to improve the road function through introduction of plants (green-environment) on and around the roads. The importances of these techniques have been recognized by the landscape architects and road engineers, and they also emphasize not on]y the establishment of road landscape features but also conservation of human's life environment by planting of suitable trees, shrubs, and other vegetations around the roads. It is essentially required to improve the present p]anting practices for establishment of the beautiful road landscape features, specially in planning, design, execution, establishment, and maintenance of plantings of the environmental conservation belts, roadside trees, footpathes, median strips, traffic islands, interchanges, rest areas, and including the adjoining route roads.

  • PDF

The Comparison of the Ultra-Violet Radiation of Summer Outdoor Screened by the Landscaping Shade Facilities and Tree (조경용 차양시설과 수목에 의한 하절기 옥외공간의 자외선 차단율 비교)

  • Lee, Chun-Seok;Ryu, Nam-Hyong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.20-28
    • /
    • 2013
  • The purpose of this study was to compare the ultra-violet(UV) radiation under the landscaping shade facilities and tree with natural solar UV of the outdoor space at summer middays. The UVA+B and UVB were recorded every minute from the $20^{th}$ of June to the $26^{th}$ of September 2012 at a height of 1.1m above in the four different shading conditions, with fours same measuring system consisting of two couple of analog UVA+B sensor(220~370nm, Genicom's GUVA-T21GH) and UVB sensor(220~320nm, Genicom's GUVA-T21GH) and data acquisition systems(Comfile Tech.'s Moacon). Four different shading conditions were under an wooden shelter($W4.2m{\times}L4.2m{\times}H2.5m$), a polyester membrane structure ($W4.9m{\times}L4.9m{\times}H2.6m$), a Salix koreensis($H11{\times}B30$), and a brick-paved plot without any shading material. Based on the 648 records of 17 sunny days, the time serial difference of natural solar UVA+B and UVB for midday periods were analysed and compared, and statistical analysis about the difference between the four shading conditions was done based on the 2,052 records of daytime period from 10 A.M. to 4 P.M.. The major findings were as follows; 1. The average UVA+B under the wooden shelter, the membrane and the tree were $39{\mu}W/cm^2$(3.4%), $74{\mu}W/cm^2$(6.4%), $87{\mu}W/cm^2$(7.6%) respectively, while the solar UVA+B was $1.148{\mu}W/cm^2$. Which means those facilities and tree screened at least 93% of solar UV+B. 2. The average UVB under the wooden shelter, the membrane and the tree were $12{\mu}W/cm^2$(5.8%), $26{\mu}W/cm^2$(13%), $17{\mu}W/cm^2$(8.2%) respectively, while the solar UVB was $207{\mu}W/cm^2$. The membrane showed the highest level and the wooden shelter lowest. 3. According to the results of time serial analysis, the difference between the three shaded conditions around noon was very small, but the differences of early morning and late afternoon were apparently big. Which seems caused by the matter of the formal and structural characteristics of the shading facilities and tree, not by the shading materials itself. In summary, the performance of the four landscaping shade facilities and tree were very good at screening the solar UV at outdoor of summer middays, but poor at screening the lateral UV during early morning and late afternoon. Therefore, it can be apparently said that the more delicate design of shading facilities and big tree or forest to block the additional lateral UV, the more effective in conditioning the outdoor space reducing the useless or even harmful radiation for human activities.