• 제목/요약/키워드: Design of Pump

Search Result 1,530, Processing Time 0.029 seconds

Study on Preliminary Design of Fuel Transfer Jet Pump Using SIMULINK (SIMULINK를 이용한 연료 이송용 제트펌프 기본 설계에 관한 연구)

  • Kong Chang-Duk;Park Jong-Ha;Han Dong-Joo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.38-43
    • /
    • 2006
  • In the present study, preliminary design and analysis for a jet pump, which is able to transfer fuel from the tank to the engine, were performed as an aerospace component technology development project. The jet pump is a core part, which is normally installed in the fuel tank, to supply the fuel from the tank to the engine feed pump, or to transfer the feed between tanks. In order to design preliminarily installed in the jet pump, equations for design were modelled using SIMULINK, and the design was carried out based on the simulation model.

Study o Preliminary Design on Jet Pump for Fuel Transfer Using SIMULINK (SIMULINK를 이용한 연료 이송용 제트펌프 기본 설계에 관한 연구)

  • Kong Chang-Duk;Park Jong-Ha;Omollo Owino George;Han Dong-Joo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.464-468
    • /
    • 2005
  • In the present study, preliminary design and performance analysis for a jet pump, which is able to transfer fuel from the tank to the engine, were performed as an aerospace component technology development project. The jet pump is a core part, which is normally installed in the fuel tank, to supply the fuel from the tank to the engine feed pump, or to transfer the feed between tanks. In order to design preliminarily installed in the jet pump, equations for design were modelled using SIMULINK, and the design was carried out based on the simulation model.

  • PDF

Design Modification of Bearing Walkout of Water Pump by a Finite Element Analysis (유한요소해석을 이용한 워터펌프 베어링돌출 설계 개선)

  • Yang, Chull-Ho;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.164-169
    • /
    • 2006
  • A systematic methodology has been proposed to establish a reliable design of water pump system. A simplified steady-state dynamic model of water pump system has been developed to study the response of water pump system to the dynamic load mainly due to the run-out and unbalance. Design modifications are needed to strengthen the structural integrity of existing designs. Increasing the natural frequency of system is pursued to prevent a resonance from occurring in the engine excitation range. A computational reliability methodology combined with finite element analysis is used to identify the most significant factor affecting the system performance. This method considered influence of design control parameters for the performance of design. By including control factors to the system model in a systematic way, more reliable design is expected.

Design loop-filter for GHz-range charge-pump PLL (GHz급 charge-pump PLL응용을 위한 루프 필터 설계)

  • 정태식;전상오
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.11
    • /
    • pp.76-85
    • /
    • 1997
  • Charge-pump loop filter was designed using GaAs MESFET for GHz-range PLL system applications. Characteristics of charge-pump loop filter and stability of charge-pump PLL, system were analyzed. Performance specifications were defined and a charge-pump loop filter was designed that satisfies these specifications.

  • PDF

A Numerical Study on the Performance Improvement of Guide Vanes in an Axial-flow Pump (축류펌프 안내깃의 성능 향상을 위한 수치해석적 연구)

  • Park, Hyun-Chang;Kim, Sung;Yoon, Joon-Yong;Choi, Young-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.58-63
    • /
    • 2012
  • This paper presents a numerical study on the performance improvement of axial-flow pump with guide vanes. Design optimization for guide vanes in an axial-flow pump has been studied through the implementation of a commercial CFD code and DOE (design of experiments). We also discussed how to improve the performance of the axial-flow pump by designing the guide vanes. Geometric design variables were defined by the meridional plane and vane plane development of guide vanes. The effect of hub tip ratio analyzed the meridional plane of guide vanes. The importance of the geometric design variables was analyzed using $2^k$ factorial designs. The objective functions for guide vane geometric variables were defined as the total efficiency and the total head at the design flow rate. From the $2^k$ factorial design results, the important design variables were found and the performance was increased in comparison with the base design model.

Methodology for Simulation of Trochoid Pump (트로코이드 펌프의 시뮬레이션 방법론)

  • Kim, Myung Sik;Chung, Won Jee;Jeong, Seung Won;Jeon, Ju Yeal
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.465-471
    • /
    • 2013
  • Flow rate control is the uppermost concern for a trochoid hydraulic pump. Cavitation within the flow field of the pump has the greatest effect on the flow control during high-speed pump rotation of approximately 3500~4000 RPM. In this paper, based on AMESim$^{(R)}$ and Solid Works$^{(R)}$, we will present a method to simulate cavitation by analyzing the control factors of a trochoid pump, including the hydraulic pressure change at the outlet, flow rate based on the rotation speed of the inner rotor, leakage through the gap between the outer and inner rotors, and discharging angle of the outlet. The proposed methodology of the [cavitation simulation will enable field engineers to more easily design trochoid pumps, and will allow more concrete control over the flow rate of the pump by realizing an analysis model similar to the actual product model.

Design of the Compound Smart Material Pump for Brake System of Small·Medium Size UAV (중소형 무인기 브레이크 시스템용 복합형 지능재료펌프 설계)

  • Lee, Jonghoon;Hwang, Jaihyuk;Yang, Jiyoun;Joo, Yonghwi;Bae, Jaesung;Kwon, Junyong
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • In this study, the design of compound smart materials hydraulic pump that can be applied to a small-medium size UAV having a limited space envelope and weight has been conducted. Compound Smart Material Pump(CSMP) proposed in this paper is composed of a pressurize pump and a flow pump for supplying the high pressure and fluid displacement to overcome the disadvantages of the piezoelectric actuator which has a small strain. Though this compound smart material pump has been designed as small size and lightweight as possible, it can sequentially supply the sufficient large flow rate and pressure required for the brake operation. For the design of CSMP, about 2,700 kg (6,000 lb) class fixed wing manned aircraft was selected. Based on the established requirements, the design of the CSMP have been done by strength, vibration, and fluid flow analysis.

Design of the Port Plate for Gerotor Pumps (제로터 펌프의 측판 설계)

  • Nam, Yun-Joo;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.406-414
    • /
    • 2004
  • In Gerotor pump, the pressure pulsations which occur due to the pump geometry result in vibration and noise of pump elements as well as cavitation in hydraulic system when the chambers of gerotor enter the delivery port and leave the suction port. Therefore it is important to study on the pressure pulsations before design and analysis of characteristics in Gerotor pump. In this paper, to reduce the unnecessary pressure pulsations, the port plate of Gerotor pump is designed based on the notch of the vane pumps and the relief grove of the piston pumps. The theoretical analysis of the pressure pulsations is performed in consideration of design parameters of the port plate which include each port positions and groove width and operating conditions which include rotational velocity and delivery pressure.

Study on Simulation of Fuel Injection Pump for Marine Medium Diesel Engine (선박 중형디젤엔진용 연료분사펌프 해석 연구)

  • Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.123-129
    • /
    • 2012
  • This study was carried out to improve the design of fuel injection pump for marine medium diesel engine. For this purpose, all parts of fuel injection pump were modeled and simulated using CATIA V5R19, FLUENT & MSC Nastran. Flow analysis for plunger cylinder and structural analysis for plunger, roller and spring, which were considered as essential parts of fuel injection pump, were performed to find the optimal design of fuel injection pump. As the results, flow of fluid in plunger cylinder was showed good results in case of 7.7~8.0m/s of plunger velocity. Furthermore, it was confirmed that plunger, roller and spring could be operated safely under 1,800bar pressure.

Drying Performance Simulation for the Basic Design of a Heat Pump Dryer (열펌프 건조기의 기본 설계를 위한 건조 성능 해석)

  • Lee, Kong-Roon;Kim, Ook-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.860-867
    • /
    • 2007
  • Heat pump drying has a great potential for energy saving due to its high energy efficiency in comparison with conventional air drying. In the present study, the performance simulation for the basic design of a heat pump dryer has been carried out. The simulation includes one-stage heat pump cycle, simple drying process using the drying efficiency. As an example, the heat pump cycle with Refrigerant 134a has been investigated. For the operating conditions such as the average temperature of the condenser, the heat rate released in the condenser, the flow rate of drying air, and drying efficiency, the simulation has been carried out to figure out the performance of the dryer. The parameters considered in the design of the dryer are COP, MER, SMER, the rate of dehumidification, the temperature and humidity of drying air and those parameters are compared for different conditions after carrying out the simulation.