• Title/Summary/Keyword: Design of Pump

Search Result 1,531, Processing Time 0.027 seconds

Design and Analysis of Centrifugal Pump using Experimental Factor (실험계수를 이용한 원심 펌프의 설계와 해석)

  • Im, Hyo-Nam;Kim, Jin-Young;Yang, Chang-Jo;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.434-440
    • /
    • 2000
  • This study is focused on the performance prediction and design of the centrifugal pump with optimum shape. Design and analysis of centrifugal pump rely on experience of designer due to many fluid mechanical and geometrical variables. In this study, a design method was developed with experimental factors and analysed the method by comparition with 2nd-order vortex panel method. Impeller is the most important component affecting the performance of the centrifugal pump. The predicted total head for three cases, of which designs were determined by this method, agrees well with a particular commercial pump. This study shows that satisfactory performance of an optimal pump shape can be obtained through the automatic design routine.

  • PDF

Numerical Analysis of Fluid Flow in a Fuel Pump for a Turbopump System (터보펌프용 연료펌프의 내부 유동 해석)

  • Choi, B. S.;Yoon, E. S.;Park, M. R.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.258-263
    • /
    • 2001
  • A fuel pump for a turbopump system has been designed under an international co-work program. The liquid methane fuel pump has an inducer, in front of centrifugal impeller blades, to improve cavitation performance. The three dimensional viscous flow in the fuel pump was investigated through numerical computation. An arrangement of the inducer and impeller has yielded a strong interaction between inducer and impeller blades. The performance of the pump was evaluated from the calculated results. A parametric study was performed for various design variables, and it could oner a database for design parameters to design a fuel pump. A modified design of a fuel pump was proposed by KIMM to improve pump performance.

  • PDF

Hydraulic Design Optimization and Performance Analysis of a Centrifugal Blood Pump (원심형 혈액펌프의 최적화 수력설계 및 성능해석)

  • Park Moo Ryong;Yoo Seong Yeon;Oh Hyoung Woo;Yoon Eui Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.87-94
    • /
    • 2006
  • This paper presents the hydrodynamic design and performance analysis method for a miniaturized centrifugal blood pump using three-dimensional computational fluid dynamics (CFD) code. In order to obtain the hydraulically high efficient configuration of a miniaturized centrifugal blood pump for cardiopulmonary circulation, a well-established commercial CFD code was incorporated considering detailed flow dynamic phenomena in the blood pump system. A prototype of centrifugal blood pump developed by the present design and analysis method has been tested in the mock circulatory system. Predicted results by the CFD code agree very well with in vitro hydraulic performance data for a centrifugal blood pump over the entire operating conditions. Preliminary in vivo animal testing has also been conducted to demonstrate the hemodynamic feasibility for use of centrifugal blood pump as a mechanical circulatory support. A miniaturized centrifugal blood pump developed by the hydraulic design optimization and performance prediction method presented herein shows the possibility of a good candidate for intra and extracorporeal cardiopulmonary circulation pump in the near future.

Hydraulic Design and Performance Evaluation of a Fuel Pump for a High Pressure Turbopump System (고압 터보펌프용 연료펌프의 수력설계 및 성능 평가)

  • Choi, Bum-Seog;Yoon, Eui-Soo;Oh, Hyoung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.2 s.29
    • /
    • pp.31-38
    • /
    • 2005
  • A low NPSH and high pressure fuel pump has been designed for a turbopump system. The fuel pump has an axial inducer and a centrifugal impeller. A meanline method has been established for the preliminary design and performance prediction of pumps at design or off-design points. KeRC(Kelyish Research Center) carried out a model testing of the fuel pump with water as a working fluid at the reduced speed. Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute. In the current study, the three dimensional viscous flow in the fuel pump was investigated through numerical computation. A modified design of the fuel pump was generated to improve pump performance by utilizing CFD results. The modified fuel pump was experimentally tested by ROTEM and KARI(Korea Aerospace Research Institute). The measured non-cavitating and cavitating performance showed a good agreement with designed performance.

Study on the Optimum Design of Ground Source Heat Pumps (지열원 히트펌프 시스템의 최적 설계 기법 연구)

  • Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.35-42
    • /
    • 2018
  • Among the various ground source heat pump systems, vertical-type heat pump systems have been distributed greatly. Most of the vertical-type ground source heat pump systems have been designed based on the Korean Ministry of Knowledge Economy Announcement in Korea. In this study, the design process of the vertical-type ground source heat pump system in the announcement was analyzed, and the effects of the design parameters on the ground loop heat exchanger were investigated. Borehole thermal conductivity was the highest dominant design parameter for ground loop heat exchangers. The borehole thermal conductivity was changed according to the pipe and grout thermal conductivity. For optimal design of the ground heat pump system, it is highly recommended that the design process in the announcement will be revised to adopt the various tubes and grout which have higher thermal conductivity. In addition, the certification standard for heat pump unit should be revised to develop the heat pump with a small flow rate.

Study on Accelerated Life Test Design for a Gear Type Lubrication Pump for Automatic Transmission (자동변속기 윤활용 기어펌프의 가속 수명시험 설계에 관한 연구)

  • Park, Jong-Won;Jung, Dong-Soo
    • Journal of Applied Reliability
    • /
    • v.12 no.3
    • /
    • pp.201-213
    • /
    • 2012
  • A gear type lubrication pump is an essential component of the powertrain and has a major role for supplying oil to the gears and bearings in automatic transmission with a hydraulic clutch. Therefore, the durability test code design of lubrication pump is very important to ensure the reliability of the entire transmission and the vehicle. In this study, the design process for the life testing of lubrication pump has been generalized by four steps. The four design steps of the life testing of lubrication pump consist of the configuration of load spectrum, rain flow counting and analysis of load level, the equivalent damage assessment and test code generation. In fact, the load spectrum should be obtained from the field operating condition but that kind of data is the top secret of manufacturers. This is not open to the public in general. So we could use the artificially simulated load spectrum instead of field obtained one and focused on the development of the general process for designing the life test of a gear type lubrication pump. Reliability goals for lubrication pump, pressure, torque, temperature and load spectrum, if present, as appropriate for the given test conditions, accelerated life testing for the lubrication pump can be designed by the developed design steps.

Flow Analysis of Water Pump for Clean Disel Engine Application (클린 디젤엔진용 워터펌프 유동해석)

  • Lee, Dongju;Kim, Taeyoung;Chon, Mun Soo
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.61-65
    • /
    • 2014
  • Pressure distribution around rotating impeller blades in centrifugal pump has been main issue for design of efficient and high performance automotive water pump. In addition, pressure losses of inlet water pipes should be considered to reduce additional pressure drop and design high performance engine cooling system. In this paper, pressure distribution inside water pump and pressure drop between inlet and outlet of water pump are investigated numerically to design plastic water pump for clean diesel engine application. And the inlet geometry of water pump was considered to analysis the effect of inlet water pipe geometry on pressure distribution around impeller blades and outlet pressure. The prediction results are compared with experimental data to validate and determine optimal operation condition without water pump cavitation. Major design parameters such as blade angle, volute geometry, system pressure, and coolant flow rate are considered to confirm applying possibility of plastic blades to the clean diesel engine.

A Study of NPSH Required Performance Improvement for a Industrial Vertical Pump (산업용 수직펌프의 흡입성능 향상 연구)

  • Chung, Kyung-Nam;Park, Jong-Hwoo;Kim, Yong-Kyun;Kim, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.909-915
    • /
    • 2009
  • In this paper, a study of performance improvement for a centrifugal vertical pump having specific speed of 330 is introduced. The existing model has high efficiency but needs better NPSH required performance. Such that new pump model is designed to obtain larger suction specific speed. 6 design parameters considered to affect pump performance are selected for impeller design. Key design parameters are investigated using by design of experiments and CFD, and impeller inlet diameter is increased to get better suction performance. The amount of inlet diameter increase is determined by using cavitation analysis. The results show that new design model has higher efficiency and better NPSH required performance than the existing model.

Multi type heat pump system computer simulation and experimental verification (멀티형 히트펌프 시스템 컴퓨터 시뮬레이션과 실험적 검증)

  • 한도영;정민영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.12-19
    • /
    • 2000
  • The multi type heat pump system may provide more energy savings and better environmental conditions than the single type heat pump system may do. In order to design a multi type heat pump system, it may be recommended to develop the system simulation program, which can predict the characteristics of the system such as unit capacities, power consumptions, and system COP's. In this study, the steady state simulation program of the multi type heat pump system was developed. The results from the simulation program were compared with those from the experimental tests which were performed in the environmental chamber, Cooling tests show 3.11% and 0.94% of error in capacity and COP, and heating tests show 3.30% and 1.90% of error in capacity and COP, respectively. Therefore, the steady state simulation program developed for this study can effectively be used for the design and the performance prediction of the multi type heat pump system.

  • PDF

Hydraulic Design and Performance Evaluation of a Fuel Pump for a High Pressure Turbopump System (고압 터보펌프용 연료펌프의 수력설계 및 성능 평가)

  • Choi, Bum-Seog;Yoon, Eui-Soo;Oh, Hyoung-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.341-346
    • /
    • 2004
  • A low NPSH and high pressure fuel pump has been designed for a turbopump system. The fuel pump has an axial inducer and a centrifugal impeller. A meanline method has been established for the preliminary design and performance prediction of pumps at design or off-design points. KeRC carried out a model testing of the fuel pump with water as a working fluid at the reduced speed. Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute. In the current study, the three dimensional viscous flow in the fuel pump was investigated through numerical computation. A modified design of the fuel pun was generated to improve pump performance by utilizing CFD results. The modified fuel pump was experimentally tested by ROTEM and KARI. The measured non-cavitating and cavitating performance showed a good agreement with designed performance.

  • PDF