• Title/Summary/Keyword: Design of Mix Proportion

Search Result 105, Processing Time 0.027 seconds

Experimental Study to Investigate the Factors Affecting Durability of Spalled Cement Concrete Pavements (스폴링이 발생한 콘크리트 포장의 내구성 영향인자 조사를 위한 실험적 연구)

  • Yoo, Tae Seok;Ryu, SungWoo;Kim, Jin Cheol
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.27-34
    • /
    • 2018
  • PURPOSES : It is necessary to prevent premature failure of concrete pavements caused by durability problems. The purpose of this study was to find factors affecting the durability of concrete pavements, and suggest improvement methods for existing concrete mix design. METHODS : Factors influencing durability were derived from laboratory test data for common field failure conditions and main properties of concrete cores taken from the field. The improvement of concrete properties was investigated by evaluating the performance of existing and proposed mix proportion designs and curing methods. RESULTS : The compressive strength and the absorbing performance of the low Blaine cement and the high-strength mixture were better than those of the Type I cement. Wet curing showed better compressive strength, elastic modulus, coefficient of thermal expansion, and absorption performance than air curing or compound curing. As a result of comparing concrete cores collected in the field, the sections with good durability showed good performance in terms of resistance to chloride ion penetration, absorption, and initial absorption rate. CONCLUSIONS : The absorption performance was considered as a possible foactor affecting durability of cement concrete pavements as a result of field core tests. In order to improve the durability of the pavement concrete, it is necessary to improve the existing mixtures and curing methods.

Flowability and Strength Properties of High Flowing Self-Compacting Concrete Using for Tunnel Lining

  • Choi, Yun-Wang;Choi, Wook;Kim, Byoung-Kwon;Jung, Jea-Gwone
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.145-152
    • /
    • 2008
  • So far, there has been no study of the concrete to strengthen in the lining of the tunnels, except for the study of the stability of subgrade and the tunnel construction technologies. In the existing concrete work for tunnel lining, lots of problems happen due to the partial compaction and the material segregation after casting concrete. Accordingly, the aim of this study is to improve economic efficiency and secure durability through the improvement of the construction performance and quality of the concrete for the tunnel lining among the civil structures. Therefore, the compactability and strength properties of the High Flowing Self-Compacting Lining Concrete (HSLC) are evaluated to develop the mixing proportion for design construction technology of HSLC that can overcome the inner cavity due to the reduced flowability and unfilled packing, which has been reported as the problem in the existing lining concrete. The result of the evaluation shows that the ternary mix meets the regulations better than the binary mix. Consequently, it has been judged applicable to the cement for tunnel lining.

Mix Design Process for Securing Extrudability of Concrete Containing Coarse Aggregates for 3D Printing (3D 프린팅을 위한 굵은 골재가 포함된 콘크리트의 압출성 확보를 위한 배합설계 프로세스)

  • Yoon Jung Lee;Sun-Jin Han;Sang-Hoon Lee;SuMin Yoon;Kang Su Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2024
  • Mortar has been applied in most previous studies on 3D concrete printing. In such cases, however, the economic efficient cannot help decreasing due to higher binder contents and larger amount of fine aggregates. In order to enhance the applicability of 3D printing technology to construction industry, therefore, 3D concrete printing technology utilizing coarse aggregates needs to be developed further. This study aims at proposing the mix design process of concrete containing coarse aggregates for 3D printing. Based on extensive literature review and experimental studies, the mix proportion suitable for 3D printing has been derived, and the extrudability of concrete with coarse aggregates has been verified through 3D printing tests. The primary variable of the extrudability tests was the contents of viscosity modifying agent (VMA), and the extrudability was quantitatively evaluated by measuring dimensions, distribution of aggregates, and surface quality of 3D-printed filaments. The test results showed that the dimensional suitability and surface quality were improved as the VMA contents were larger, and the coarse aggregates were evenly distributed in the section of filament regardless of the VMA contents. Based on the test results, the mix design process for concrete containing coarse aggregates for 3D printing has been proposed.

Optimal Mixture Proportion for High Performance Concrete Incorporating Ground Granulated Blast furnace Slag

  • Choi Jae-Jin;Kim Eun-Kyum;Yoo Jung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.473-480
    • /
    • 2005
  • In this study, a mix design for self compacting concrete was based on Okamura's method and concrete incorporated just a ground granulated blast furnace slag. Replacement ratio of slag is in the range of $20-80\%$ of cement matrix by volume. For the optimal self compactability in mixture incorporating ground granulated blast furnace slag, the paste and mortar tests were first completed. Then the slump flow, elapsed time of 500mm slump flow, V funnel time and filling height by U type box were conducted in concrete. The volume of coarse aggregate in self compacting concrete was in the range of $50-60\%$ to the solid volume percentage of coarse aggregate. Finally, the compressive and splitting tensile strengths were determined in the hardened self compacting concrete incorporating ground granulated blast furnace slag. From the test results, it is desirable for self compacting concrete that the replacement of ground granulated blast furnace slag is in the range of $40-60\%$ of cement matrix by volume and the volume of coarse aggregate to the solid volume percentage of coarse aggregate with a limit of $55\%$.

Representation Forms of Personal Style on the Fashion Blogs (패션블로그에서 퍼스널 스타일 표현형식)

  • Suh, Sung Eun
    • Fashion & Textile Research Journal
    • /
    • v.16 no.5
    • /
    • pp.689-697
    • /
    • 2014
  • This study aims to analyze the representation forms of bloggers' personal style on the fashion blogs and enlighten their values which can be actively applied to design and marketing in fashion industry. Image representation of fashion bloggers is reflected by the characteristics in the digital environment, which are the creative manipulation of expression and the production of virtual and fantastic images by taking advantage of the composite medium such as images, music, videos, articles, etc. Also real time updates in blog indicate the latest trends in terms of the representation of image as the actual currency. The study conducted case studies of 5 women's personal fashion blogs through the verification of a variety of global fashion media and blog ranking sites: Style Bubble, Style Rookie, The Cherry Blossom Girl, The Blond Salad, and Fashion Toast. Research findings are as follows. First, the application of creative design elements is indicated as symbolic items, self-made designs, DIY, and various mix and match emphasizing design elements such as color, patterns, proportion, etc. Second, the virtual representation is very highlighted on the story telling applied by film like production or digital effect. Third, the commercial application with mainly sponsored wardrobe and designer collaboration indicates promoting a updated trend as well as a specific brand or designer to make their business profits.

The Optimum Binder Ratio for High-Strength Self-Leveling Material (고강도 Self-Leveling재의 최적 결합재비)

  • Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.89-98
    • /
    • 2002
  • Self-leveling material(SLM) is one of the floor finishing materials which make flat surface like as water level by itself in a short time. So it is possible to increase construction speed and enhance economical efficiency In this study, author intended to develop SLM for the industrial warehouse and factory loading heavy weight machinery and vehicles. The demanded properties for this type of SLM are above 200mm of flow value and above 300kgf/$cm^2$ of 28-days compressive strength. To possess demended strength and fluidity, SLM have to be composed of many types of binders and chemical additives. So it is difficult to decide suitable mixing proportion of composition materials. In this study, author investigated the weight percentage effect of main composition materials for high-strength self-leveling material, by experimental design such as tables of orthogonal arrays and simplex design, and by statistical analysis such as analysis of variance and analysis of response surface. Variables of experiments were ordinary Portland cement(OPC), alumina cement(AC), anhydrous gypsum(AG), lime stone(LS) and sand, and properties of tests were fluidity of fresh state and strength of hardened state. Results of this study are showed that suitable mix proportions of binders for the high strength self-leveling materials are two groups. One is 78~85.5% OPC, 7.5~9.5% AC, 9~12.5% AG and the other is 72.5~78% OPC, 9~12.5% AC, 13~15% AG.

Correlation between Mix Proportion and Mechanical Characteristics of Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트의 배합비와 역학적 특성 사이의 관계 추정)

  • Choi, Hyun-Ki;Bae, Baek-Il;Koo, Hae-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.331-341
    • /
    • 2015
  • The main purpose of this study is reducing the cost and effort for characterization of tensile strength of fiber reinforced concrete, in order to use in structural design. For this purpose, in this study, test for fiber reinforced concrete was carried out. Because fiber reinforced concrete is consisted of diverse material, it is hard to define the correlation between mix proportions and strength. Therefore, compressive strength test and tensile strength test were carried out for the range of smaller than 100 MPa of compressive strength and 0.25~1% of steel fiber volume fraction. as a results of test, two types of tensile strength were highly affected by compressive strength of concrete. However, increase rate of tensile strength was decreased with increase of compressive strength. Increase rate of tensile strength was decreased with increase of fiber volume fraction. Database was constructed using previous research data. Because estimation equations for tensile strength of fiber reinforced concrete should be multiple variable function, linear regression is hard to apply. Therefore, in this study, we decided to use the ANN(Artificial Neural Network). ANN was constructed using multiple layer perceptron architecture. Sigmoid function was used as transfer function and back propagation training method was used. As a results of prediction using artificial neural network, predicted values of test data and previous research which was randomly selected were well agreed with each other. And the main effective parameters are water-cement ratio and fiber volume fraction.

Quality Evaluation and Mix Proportion of Antiwashout Underwater Concrete with Mineral Admixture (광물질 혼화재료를 사용한 수중불분리성 콘크리트의 배합 및 품질평가 방안 검토)

  • Park, Yong Kyu;Kim, Hyun Woo;Yoon, Ki Woon
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.679-686
    • /
    • 2014
  • In this research, the mix proportion of the antiwashout underwater concrete with the mineral admixture was evaluated. It can reduce the amount used of the antiwashout admixture (hereinafter referred to as "AWA") and satisfy the properties of concrete. In addition, the review for the difference of the test and practical affairs were conducted. Optimized unit quantity of water of antiwashout underwater concrete and the amount used of AWA was revealed by $190kg/m^3$, 0.9%/W, respectively. In particularly, the mix design is reduced by 5% than the W/B of target strength even though the W and AWA reduced. Therefore, it will have the economical feasibility and qualities including the material separation, resistance characteristic and compressive strength, and etc. The stable value was shown in 1 point of minute passed in the measurement of the turbidity amounts using the turbidimeter after the checker insertion. However, it needs to be reviewed for the interrelationship between turbidity measuring machine and KCI-AD102 standard method. There were no significant differences of compressive strength of specimens in the water depending on the production methods.

A Fundamental Study on the Mix Design in High Volume Fly-Ash Concrete (플라이애시를 대량 사용한 콘크리트의 배합설계를 위한 기초적 연구)

  • 심재형;김재환;최희용;강석표;최세진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.641-646
    • /
    • 2001
  • Generally, when Fly-Ash was used as replacement material of cement in concrete, it might occur retardation of setting and hardening. So, it is unable to use a large amount of Fly-Ash as replacement for cement. However, if it is used as replacement material of fine aggregate in concrete, we can use a large amount of Fly-Ash and settle a problem of natural-aggregate exhaustion. Furthermore, engineering properties of High Volume Fly-Ash Concrete Is better than that of plain concrete But, the larger Fly-Ash is replaced, the more fluidity of High Volume Fly-Ash Concrete decrease, because porous organization of Fly-Ash adsorb water and Superplasticizer. In this study, after appending additional water to High Volume Fly-Ash Concrete in proportion to weight of Fly-Ash, we intend to find proper ratio which doesn't affect strength and satisfy fluidity As a result of this study, it was found that fluidity of mortar with 25~28 percentage of additional water was satisfied with fluidity of plain mortar, and compressive strength of that was similar to plain mortar's

  • PDF

A Study on the Properties of the Confined water ratio for Binder type and Replacement ratio (결합재의 종류 및 치환율에 따른 구속수비의 특성에 관한 연구)

  • Kwon Yeong-Ho;Lee Hyun-Ho;Lee Hwa-Jin;Ha Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.584-587
    • /
    • 2004
  • This research investigates the rheological behavior and the confined water ratio of the cement paste and binder condition in order to predict mix design proportion of the high flowing concrete. The purpose of this study is to determine the optimum replacement ratio of binders including fly ash, and lime stone powder by the cement weight. For this purpose, belite cement, blast furnace slag cement and ordinary portland cement are selected. As test results, the confined water ratio shows the following range ; OPC>blast furnace slag cement>belite cement. Therefore, belite cement is proved very excellent cementitious materials in a view point of the flowability. The optimum replacement ratio of lime stone powder is shown over $30\%$ in case of belite cement and about $10\%$ in case of slag cement type. Also, the optimum replacement ratio of fly ash is shown $30\%$ by the cement weight considering the confined water ratio and deformable coefficient of the paste condition.

  • PDF